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PREFACE

The work reported here results from a collaboration

between experimental neurophysiologists and mathematical

and computer specialists, concerned with the statistical

analysis and interpretation of trains of impulses obtained

from individual nerve cells. Of the authors, Donald H.

Perkel is at The RAND Corporation, and is a consulting

member of the Brain Research Institute, University of

California at Los Angeles; George L. Gerstein is with the

Department of Biophysics (Johnson Research Foundation)

and the Department of Physiology, School of Medicine,

University of Pennsylvania; George P. Moore is with the

Departments of Physiology and Engineering and the Brain

Research Institute, University of California at Los

Angeles, and is a consultant to The RAND Corporation.

This research has been supported by U.S. Air Force

Project RAND, by the National Institutes of Health, through

grants GM-09608, NP-06372, and NB-05606, and by the

National Science Foundation, through grant G21497.

Mathematical studies and computer modeling of neural

systems are a part of the Project 8AND research directed

toward the better understanding of information processing

in nervous systems.

The contents of this Memorandum have been accepted

for publication in the Biophysical Journal, and are

scheduled to appear in Vol. 7, No. 4 (July 1967).
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SUMMARY

The train of impulses (“spikes”) produced by a nerve

cell is, in a growing class of neurophysiological experi-

ments, subjected to statistical treatment in which the time

intervals between spikes play an essential r~le. The

statistical analysis of spike trains is developed here in

terms of the underlying theory of stochastic point processes,

i.e., of stochastic processes whose realizations may be

deecribed as series of point events occurring in time,

separated by random intervals. It is intended to describe

the principal techniques available in a fairly systematic

fashion and to relate them to the underlying theory. Most

of the computational techniques discussed have been reported

in the literature; some are new.

For eingle stationary spike trains, several orders of

complexity of statistical treatment are outlined; the most

important distinction is that made between thosestatistical

measures that depend in an essential way on the serial order

of interspike intervals and those that are order-independent.

The interrelations among the several types of calculations

are shown, and an attempt is made to ameliorate the current

nomenclatural confueion in this field. The application and

interpretation of these statistical results are diecussed,

and some potential difficulties are outlined. Next, the

related analysie is discussed for experiments in which a

brief isolated stimulus is presented repeatedly.
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The analysis of two simultaneously observed spike,.,’:...:.-:?,.: . ,....
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trains is discussed next. The first statistical questionc::’.s~$.-. ...,,.,-.,,. ....,,
that arises is whether the observed trains arc independent; -;-~~

,,........J.,.tiA,

statistical techniques for testing the independence hypq$lpg~-:
.,.-,.+f,

;“:: .,+ ,,,. ,, . .

., .+,,,.. -., ,y,.. *

esis are developed around the notion that.,under the.fnw~,,:.~;.:.?:,i
,,,,,’.,.,..W ,!SX-:

hypothesis, the times of spike occurrence,in one train;,
......... .....
,$~:fl..:q

..,.&.,,,,,,..:,,..>,&,,.:........,...,
represent random instants in time with “rei+ect to the ottmw.---,

.. . -.,,..,,s.

,.,,.,,....,...
!,.*.,.,:,,,...-,,+L,.

train. If the null hypothesis is rejected--if depe~denae ....---....
,...,,.,,... ........
.---...-,,-,.~..-,,,..--_+,,,,#:

is attributed to the trains-- the subsequent problems .ar&.:;...~~~:~~~.,.,,..,/#,. . . .!..,

those of characterizing the nature and source of the oh-”
: ....,-!

,,i...

served dependencies.
“,

These are discussed, largely by ,,..@
.-:’*

means of illustrations drawn from computer simulations
.,,.,,,.:,,,:
.,,..,--,

of interacting neurons. The combination of repetitive
-:..-,.,~.

..........-..,,,......

stimulation and simultaneous recording from two (c)r
,.......,,

“‘::::z::;~+-
more)neurons is shown to give more detailed clues as ... - ‘-.’.-.-:!..

,.,
. ,,- “

to possible interactions among the monitored ndurons; 7 ~-zz
..,,-.,.

..- .
the theory that is developed is illustrated by an appli-~.~~~~~.~~”

,,......-.,,,..,!..,;,.,,.,,,,,..,,=,.,:..!..,,..,.,~
cation to experimental data from auditory ..ne.ur.ons. .“‘“”‘.““’””’’””,.. .. ..,,,1,.....- .#..... ..,,,.-,-,.,.!.

Finally, tbe effects,of nOnSta,tiOnaXi,t~--~.g.j lQ”l#-~-“’ :::,,,,-,,.

., ...

term changes in firing rate--on the various statistical:- - . .,,:;.. ..
......

measures are discussed,
- .,,,,.

The severity of the effects of “. :5:
.,., -....%,.
.,-. .. .........

rate changes on single spike-train statistics depends ‘“’:‘:.......7””,,,.,.,,.,.-...:..,:.,,F.,

strongly on the “inherent”
,.,... .- ..

variability of the. interspik$~,.~l’;-~:i-””
-,,- - . . . $.

,., ---- -,.,.,.3,

intervals; regularly firing (“pacemaker”) neurons are mti-c~“““-‘~\r
,2.,,..,,.,.

more sensitive to accelerations and decelerations than are -,
,,.:.........
.-...,,.

more irregularly firing cells.
...

For two-train comparisons, “.-.,,,.,,...4
.*

. .-
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inherent difficulties that arise for pacemaker-like neurons

even when stationary are exacerbated by shared rate changes.

For nonpacemaker cells, however, the detection and measure-

ment of dependency is significantly impaired only if the

nonstationarities are fairly severe, and hence readily

aPParent in the individual spike-train data.
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NEURONAL SPIKE TWINS AND STOCHASTIC
POINT PROCESSES

INTRODUCTION

Motivation

A neuronal spike train is the sequence of nerve

impulses, or action potentials, produced by a neuron,

typically observed over a relatively long period of time.

The analysis of spike trains has been of increasing

interest to neurophysiologists in recent years, stimulated,

no doubt, by wide availability of automatic data-processing

equipment. Spike-train analysis differs from “classical”

electrophysiological methods in that the raw data of

interest are not precise voltage measurements, but rather

precise measurements of times of occurrence of events.

From these essentially temporal data, statistical descriptions

are obtained of the output behavior of neurons, from which

inferences may be made,

specific types of basic

is not our intention to

in turn, with regard to certain

neurophysiological questions. It

pursue the questions of interpretation

and inference in the present paper (for a recent review;

see Moore, Perkel & Segundo, 1966), but rather to present

in systematic fashion the statistical techniques of spike-

train analysis, and in particular to point out some of the

relevant mathematical assumptions and relationships under-

lying the computational techniques.
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Methodological considerations, however, must not be .,,.,,
-,..,.-,-.,,.,,,.-
--.,-d,-,-.,,

isolated from inferential and interpretational questions; .,:;;:,,
.,..,.....,,,i

we have tried.to discuss the computational techniques -L-::,.
-. .......-. . - ........,,

within the larger context of neurophysicilog”icalinvestig”atio-ri;~””.-.,,. -.-d
“Our principal working assumptionsja ss%iked’in the s$~d~.”-:.:’~~~-. -q.,-~ ..........,,.
mentioned above (Moore, Perkel & Segund&, 1966), al.=l~:(@j-;”T.:’:::::

..-. —A-

that there is an enormous wealth of information aboutz,$he~:z::,~
.,,,.,,,......... ~

-..!,!,

structure and function of the nervous system which can.be. : z:??:
,,.,.-

. . -.,:,,.,:,..
derived from careful study of the detailed timings of spike . ......-i,,.,.

-+
events; (b) that analysis of these signals can shed light -:;””

on mechanisms of spike production within the observed Cell, ..~~:
,.-,,i..x.,,.,;*

on the presynaptic input to the cell, and.~n.the mechiwk~.”::;-~.,,,,....:

by which the latter is transformed into a postsynaptic “.-}..:~~:
,,,.

,. ,,.,-,,.-=.,,,,,=
.,_,,.~,+;

output; and (c) that observation of multiple ufiits can ,::.:’.~,:’
,“;:.:;:s;:::,

reveal details of interconnections and functional ink~$?~..”.:’i&$:
,,,“

r
%%

actions ... [and] the appreciation that neuronal Pr@ci?@%9s “’~;$;~~
,,,,,.........!!..~

,,“-,..?,,
.-.’

at all levels involve a probabilistic element ”whicihmiist
..- . --=
.,,,,.,,.._.-,2

be adequately incorporated if quantitative hypotheses 0??
..

models of neuronal functions are to be valid. Finally, it ~“
,.:

is held that only the more detailed analyses of spike
:.,,
.,,,
:,

timings are appropriate to any quantitative theory of - .L,.;:.&,...,.,,
information processing by the nervous system.”

-.”...............,:
spike-train analysis is applied at s“everaldifferent ‘~-,

------,,,,
..,,.-
..

levels of interpretation, and it is the level of interp.~p,?’.:”;,gz
+

,:,.:y!:~i.,,,..,,l.,,,.:
tation that largely dictates the choice and depth Of ““;’<?T~$$*-,/,.,,..&:.,.+-+-.,,,., .,.
statistical techniques for processing of the data.

~t: .,,,:::.,~:
-...
.,’
,.,.-
.-
-,

‘:%
;,,;~zf

,.,,,,,,,j:&aH..;;



-3-

one level, the statistical measures of the spike train

provide a relatively concise characterization of the output

of the neuron, which may be used for description, comparison,

and classification of nerve cells. At another level, spike-

train statistics of a neuron may afford insight into the

internal mechanisms underlying spike production; of particu-

lar importance here is the comparison of models of spike-

production mechanisms, which is typically effected through

comparison. of the corresponding spike-train statistics.

In interneuronal analysis, simultaneously recorded spike

trains are compared statistically to reveal information

concerning possible connections between neurons, shared

sources of activity, responses to stimuli, and synaptic

input-output relations. It is in the comparison of neuronal

spike trains, however, that we believe the greatest promise

of these techniques to lie, despite the greater incursion

of mathematical difficulties when compared with single-

train analysis.

In summarizing currently used techniques of spike-

train analysis, we are further prompted by our feeling

that these computational techniques have lacked adequate

theoretical underpinning, which has resulted in (a) incon-

sistency of nomenclature and notation in this field, (b)

difficulties, not always well enough appreciated, in

assigning measures of statistical significance to experi-

mental findings, (c) presentations of experimental data



..”2:
in several forms that are in fact mathematicall~ derivable.””““’- -

from each other, and (d) the risk of attributing Partic~~ar ‘;:
,,,,.yJ

physiological signi.fieance to re~ults that illu&+,rate ,;,~
......:

.;+
purely mathematical theor~ms or that are mere plausibly ..,.,.

attributable to chance effects.
1

With the advent of the
,,.,.

high-speed electronic digital computer,
,/

it has beoowe-i:::“...... ::++~
,..,

feasible to perform on a routine basis the lengthy COmPM-
.+,,,

,,, .,::;,~

tations required for spike-train analysis; it is our ~~s“”::i

~ “i

-:;::;s

feeling that in relating these computations to the”%d!zm- “’~’$’
+ :~,,“

lying mathematical (i.e., probabilistic and statistic&i)
,:;,,..~
;;;.4*,.
,,,~:!.

theory, the potential usefulness.of these techniques wt~~j” ;.”,,$

be enhanced.

,.. :

Basic Terminology and Scope
.,,,,,, ....

,,,,. ,,.......
., ,::;,

In every instance in which a detailed examinat~on:is”’
,.!,.,, .,,.:..,.l,.,, ...-,,.,,. .,,-

made of the timing of neuronal events, we are forced to” ~~ ,~;.-;“...-.,.
,- .....

realize that a certain degree of unpredictability Or “,<:;’ ;Y-:
...

,.,,,,: :...

randomness is present in the underlying process. For *QM$ ~~~~~~~~~~++
.,

purposes we

record, but

we focus on

j,..:,. ,!:.
can afford to overlook this asPect of th~:’’:;” ,,,....,

,,,,:, ,,;
for other purposes, and in particular those;.,: :,.....- -,,..4--.;,
here, the question of interest, and ind~e~:%g~ ‘ - ~~.

,.,.,.,,..,,

source of greatest information about the process bei.n%,,””:{. ~
,..,.,.,., .,,,,

,,!,,. -J
observed, is the variability and randomness of the spike ,.,.:

-!
..:’

train. .,,.“,,
.,

This very property forces us to describe the spike ~~~~~ ..{,,,,
..

train in statistical terms, and to view the processes
...

~~CI:KS2;+-~
.......” ,:,#

underlying it either as inherently probabilistic or ae i“~;:.a,,.,.,,.. -,-:~:~
rr’?,,.,
.,,,,,..

+,..,,.,,,,:,,,
,
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sufficiently complex that we can best and most simply

treat them in probabilistic terms. Processes of this type

are commonly referred to as stochastic processes. Indeed,

the transfer and processing of information in nervous

systems may be viewed as a repeated alternation, in time

and space, of two different types of stochastic processes.

The first type is characteristic of the continuous intra-

neuronal fluctuations in significant state variables of

each neuron. Typically, a state variable might be the

membrane potential as observed at the primary spike-

initiating locus, and a model of the underlying process

might be described as a complicated type of random walk,

with continuous time and “displacement” variables. The

second type of stochastic process, which is the primary

concern of this paper, arises in the etudy of the times

of occurrence of interneuronally transmitted action

potentials, i.e., the spike train, as commonly observed

with either extracellular or intracellular microelectrodes.

Because of our “all-or-none” conception of the nerve

impulse, each spike is regarded as indistinguishable from

the others produced by the same neuron. Furthermore, with

each spike can be associated a unique instant of time,

e.g., the time of maximum excursion of electrical potential,

which can be measured with a high degree of precision,

By virtue of the assumed indistinguishability* and instantaneity

Of the individual spike events, the stochastic process

‘I.e., They are distinguishable only by where they occur
in time.



,..,.,

-6- .,.
. . c -“......,,

... ...,......A.

. . . .

characterizing the spike, train can be considered an
- ....,.,..-.-..,,.

-.

example “of a stochastic point process. This process
.-....:,,.,..,,.,..,,,

occurs in one dimens~on> corresponding .tk the time axis. . .,.,~:l.......,
....... .....+..!+

In any””point process, in which a“ll”’’events%’(spiice~, “’““”’=:
-.,,., --,-,.,,.-

:.,,.
for example) are indistinguishable except for their %*s ‘.”’ - --~~~

~ ..,,:
of occurrence, it is the elapsed times between evenks”(%.g., .;~j{

.....
the ititers~ike-intervals) that exhibit the propertieso~

.,,
.-...
:.%

random variablee, These intervals are regariecl as 6Gi~ !w,,. .,,

drawn” (no? necessarily “independently.)from an underlyt~
.
.,,....

..::.~:~+
probability distribution; ’if that”distribution, together

,,

‘“$

.:??,,
,.. .,.,..)l.

with its parameters, does not ‘vary w“ith time of obser- ‘“’ ,,,,,,.jj
.s1

vation, the stochastic point process is stationary.

‘:!

,:.:
*“A’ ,,j!,

,::,:~~
sample from a“”’stationarypoint process might be approximsiteda “:””z

,:::,/
for example, by z spike train from a spontaneously ”firins ~~+$

:“i:
neuron, or from a neuron well adapted to a steady stiraqkhs.

.,:,,Y:1
.,,

A monotonic trend ’’in”””thefiring rate Or other Paririe”t.,er’:ki
::L..
,&
.....,

one of the many features of a spike train that may preclude ,.
,. ,.

its characterization as stationary.
-,“.!

-.

In most of this paper,”spike trains will be.conside”iwi
,,

....,

“’”’”“!$as realizations of’stationary point processes (ex”ceptfog : ::f,f
::#J

local effects”due to stimulation). We cover first the
p
‘,’,’’!L!
,.,.,~..’.;,~.,,,,J,:.,,1:..

-------:m*.Strictlyspeaking, stationarity” is defineti”ia ttiti~ ‘ ~~~~~~~~~,,:,_
of the invariance under translation in time of the joint

‘:;/i

,,.,,,.;:
distribution of numbers of events in fixed intervals”of j;jlj
time (Cox & Miller, 1965, pp. 339-340; Cox & Lewis, 1966}
p. 59).. An equivalent definition in terms of interval ‘“” .

distributions is difficult to formulate rigorously, mainly +
,,.,.

because of the complications introduced by the choice of ,-;,-

the starting point for describing the process. .,-4..

“-”:
-,. !,.,,*.



problems of description and interpretation as encountered

with a single neuron exhibiting spontaneous or well-adapted

activity. Next we consider the effects on a spike train

of isolated, repeated presentations of a stimulus. Then

we discuss the analysis of two simultaneously recorded

spike trains, in the absence and in the presence of

repetitive stimulation. Finally, we consider the effects

of nonstationarity on the statistical measures described

for stationary processes. The presentation is illustrated

with examples drawn both from animal experiments and from

digital-computer simulations (Perkel, 1965).



THE SINGLE SPIKE TRAIN
.,,.,-..

..7..,.:.—. ,
. . .,.,,,,.,,
--- %%

Stochastic Point Processes: Basic Nomenclature
.-..~.. -,,:,,. ...,.-.i,,.

.<.,-....-.,.!.
A stochastic point process, as gentioned aboveP isk:.%::::i..

-,-,.

. --.-,,,-----...........--,.
stochastic process “whose realizations. consist”of a seritisi:.-.,----.!,,~:

. . . . . - . ...
. ..

of point events” (Cox & Miller, 1965). The point events ::
:..;2...,,+

are considered to be instantaneous and indistinguishab~,~ . ..,,,
. . . . . . . ..

(except for position in time); for neuronal spikes, th~re-” .;~:,
.

fore, we consider, for example,
.,.

the time corresponding tm
.

::-:%

the maximum of the observed action ootential to be the ....

of the spike, such as duration, amplitude, undershoot, etc. ,:.,~~”

In a stationary point process,
.,...

the underlying probabi,litg;E::
“>.!.

distributions governing the times of occurrence 0$ tbe peinti:.’,$
...,,,,,

,,=,,.,,.=,.
events do not vary with respect to an arbitrary ttianslitlon --ye,

--,,....

*
. .,,,

of the time axis. Therefore, accelerations and decelerations ““”~:
.,,..:...

in firing rates,
.,..

and effects such as fatigue and adaptri$i$m;. ~~-+$.?--
,,1:

disqualify spike trains from acceptance “as realizations of “:””’’’
.,,,

stationary point processes.
.

We consider i.hcdetection of
,..,....
,.
-,

nonstationarit.y and its effectsjifpresen~, in the final”
,.,..-.L,.,.;

- .. ,,....&
section of this paper. For a spike train observed in the

.,
,.

.,1.,,,=,=..-,_-Jm.

absence of repetitive stimulation, “ ““”’””the assumption of statieti+”:.:::,,,,,~~~..x&,:.....j$
arity means, in a practical sense, a neuron that doesno~;’:.:::::a

‘.,,??+
display any apparent trend in firing rat”e,a“nd”””whose“modes’ .“~~-”~

- ‘----~’+~.._..,,,,,,
* ...*_.&
A more explicit definition is given by Cox & LewXB ““’” .,.-

(1966), p. 59.
‘$
,.,.,,.,,

~:,,:

,-4 ,.

..:.A.U3
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of firing does not exhibit any significant shift from one

portion of the record to another.

One important class of stationary point processes,

known as renewal processes, has the property that the

lengths of intervals between events are statistically

*
independent. Nueronal spike trains rarely satisfy this

requirement completely; even those spike trains that can

adequately be described as stationary often exhibit serial

dependence among interspike intervals.

Many results first established in renewal theory

have subsequently been generalized to nonrenewal stationary

point processes (McFadden, 1962), and in some cases even

to nonstationary processes. The terminology of renewal

theory, however, has been retained because of its intuitive

appeal, and we use it

appropriate to neuron

The Poisson, the

here . Another set of metaphors more

firings could easily be substituted.

Erlang, and the Weibull processes

are some of the most commonly encountered renewal processes

with particularly simple properties. These are discussed

amPly in the literature (COX, 1962) and have been applied

to the description of certain classes of neuronal spike

trains . Most spike trains with independent interval lengths,

*
A renewal process is stationary only if observation

begins at a random instant in time, in which case the
interval from that instant to the first event has a differ-
ent distribution from that of subsequent interevent intervals
(cox, 1962). We will assume this condition when discussing
renewal processes.
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. - :,.----,,!,,,,.,,,..,.,,,,!

however, do not.fall

attractive classes.
.

.-, ... . . ..,4
..r ,. .

.*
,-- ..?,

,.. ,,,. . ,,,,,*
into any of these mathematically :.:‘:..-

.,:.,,,.,
‘--MS%%

... -,
. -.

. .. —.,

In the following sections we describe” someof the”:-.~~,~.
.. ...

most important and useful statistical measures:of spike> --.~~:~~:
.:,.

train properties.
.,X,,,.
.,>,,-.,....,,.,,..;,:”:$~

_,__::-:+.$:“,,“,*
..-

Order-independent Statistical Measures
,..+,.>!

.,.;y2z,:,##’

For both renewal and nonrenewal stationary Point” ‘:?$?--~-:%~.,,,..,..,..... ...

processes, the (marginal) distribution of’intervalS,..!e~$~R~~,~{~.,,
‘-- ~- -- -*

successive events is of paramount importance in.cha?.ag%k~sa%”-~-:,..,..-
.,,.,.-.7:..

ing the process. For a renewal process, in fact, k.~q;..- -,,-Lw.-,,,...,.
....,.

distribution of intervals completely characterises the :..,
,., ,,,.,

...
.,....

process. For finite samples of data, such as an obse~”ea”.””.~~~,...,1,,,.,,
“i,

neuronal spike train, the interspike-interval histogram
- :-’./-.,,
, ,:.

serves as an estimator of the “actual” probability dea+~+y
,-+{,,..:,-..,,6 -,’

function (pdf).
4.-

,...:,,.:.....,++:,!$m,.
“’:X%$

To construct it, the range of observed interval ““..:”...$
p

lengths is customarily divided into bins of equal width ~.~ ‘p-..,+...

if the ith

.!,

observed interspike interval Ti Satis!ies the ~ .;:r:,:J

inequalities
...,.,..,,,,:,,..~. .,:,
...,,:....,,, :. ,.,,-,;,
.,

(1) (j -l)6<Ti~j5,
.. . ..,,.~,,.,.“. #

>

,,,,,,.,.
‘ ‘$$?$

then that interval is placed in bin j of the histogram.
,::~

,,;:,.“,_,_L‘:w+

The bins are thus numbered 1, ~, .... J. LettinE l$a .-TY.:..:.:&’.,,_ti,,.
,’~

designate the number of intervals placed in bin j itian”’” ‘“ .Z+
., ““-.,,

observation of N intervals (i.e., N + 1 spikes), then the
.,l~.j

“’:$;
,i.

*:.:.::,,,,,.:
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ratios Nj/N are a smoothed estimate of the pdf f(T); i.e.,

they estimate the corresponding integrals

(2)
j8

Nj/N=~ f(T) dT.
(j-1)6

This quantity is the probability that the duration of a

randomly chosen interval lies between (j – 1)6 and j6.

The estimator for the average value of the pdf within the

bin is given by

(3) fj = Nj/(Nb).

Although N interval measurements are used in estimating

the usual population parameters such as mean, variancej etc.,

it is only for a renewal process that the N observations are

independent. Measures of precision assigned to these esti–

mates by the standard formulas may be misleading if the

process is not a renewal.

For both renewal and nonrenewal processes, there are

several functions completely equivalent mathematically to

the pdf f(7) or its estimator fj (COX, 1962, pp. 2-7).

These are illustrated in Fig. 1. One of these, the

(cumulative) distribution function,

(4a) F(T) =~~ f(t) dt =prob (T ~ T),



is estimated

(4b) Fj

by the emp:

~

= )- fkb
k=l
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rical d:stribution function
..... .,.,.
. ,,
..,.
,,~.
.,,.

.,, .
,, “,,,
.... .

.. . ,
.
. ..

and, in neurophysiological terms, measures the probability ~~<

that a neuron will have fired by time T from Ehe hs,”firing.

,., ,,,,
,,:. ,,,.
,

...
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... .
.,,,”
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.. ,,
. .. ,,
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Fig. 1

Equivalent form of the interspike-interval distribution.

a-c, interspike interval histogram (estimate of the pdf).

d-f, survivor function. g-i, hazard function. a, d, g

drawn from a “pacemaker neuron”: independently normally

distributed intervals with mean 100 msec and standard

deviation 5 msec. b, e, h from a Poisson process with

mean interval 10 msec, conditioned by a normally distri-

buted dead time (refractory period) with mean 10 msec,

standard deviation 2 msec. c, f, i from a log-normal

distribution, with pdf x‘1(2na)-* exp {-[log (px)]2/(2a)],

with p = 27.2 sec-1 anda =2. Each sample contains

approximately 2000 intervals.



o

-14-

:;
::
>=
::
:;
::
;:, ,,,
::
;::
. . .+.::

. . . .:: .,=
~:::
::,!;

y;:

=$::

>;;;

;~::

;:~~

>;j~

;;:;

~:=~

::::

. . . . . .
. . . . . .
. . ...”

. ..”... . . . . .

. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .. . . . . .
. . . . . .
. . . . . .
. . . . . .
. . . . . .. . . . . .
. . . . . .
. . ...”
. . . . . .
““. . . .
“.. ..”
. . . . . .
. . . . . .
. . . . . .
. . . . . .. . . . . .
. . . . . .
. . . . . .. . . . . . . .

. . ...=..
. . . . . . . .
. . . . . . . .. ..=....
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . . . . . .
. . . ...”.
. . . . ...”
. . . . . . . .
. . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .

. . . . . . . . . .
. . . ...”....
. . . . . . . . . . .

. . . . . ...=. . .

0,m 0.10
limebad

Fig. l(a)

.,,,,,,.,,

“,,., .

,.,.

.
. ,,,

:; .,
. .

-.
... ,

.,, ,; ..,,,

, ,..,. :,,:,. : ,. . ,,,’,..:,
.-.. .

...,. .

,,,

:j
.,,,-

, .-, .,
““::

.44



-15.

x“

,“
,,

,,

>“

r“

r“
“,”””

““,, ”,,”

r,
r“,,, ”

,“, ”,,

“r,

“1”, >,,, ”1>,

“!””,,

,,, ”,,,,,,.”

,,”””>”, ,

“,>,l,, >.,,,,

“,,,,.,

““,,,, ,”,,,

.“”, ”,,”,,””,

“.”, ”,, ”,””” ””(,,, ””
:

X,xxxx, ,x,<,,,>,

,,,,,, ””,,,,”,,,,”,,”

,,.,, ”,”,””,”,”,,,

,,,, ””,,,”,,””,””,,”

“,,, ”” ,1,,”””,.”,<”. ,,

,“,. ”,”,,”,”,,,,,””,”,”,”,”,
““, ”.,”,,”,,”,,,””,”,,, ,.,,, ”

.,”.., ””,”..,”,,”,,,””,,”!,,”,
“,”,,,,,..””,”,,,”,’”, ,,,, ”.””,,,,,,,,,,.

“,,,, ”,l.., ,,,.,,,,,,,,,, “,,, ,,, ,,, ,, ,”,.,,
,“””,,,,, ””,,””,,,”,,,”,”, “Xxx” ”,,, x,x> x,”r, x),,> ,,,

,,,,, ”.,,. ”,””,l,,,,, ” ,,,,, ”,,,,,,,,,”.,,,”, “x,,
,“,, ”,””,”,,,”,,,,,,,,,,” ,“””,, ,,””, ”””,,,,>,,,, ,,, ””

,,. ”,,,,,,,,,,,.,.,,”,,, ,“, ”,,.,.,,”,,,””,,,,,” ,,,, X, X, XX, XX> X,,,,,

,,>,,,, ”,,,,”,,”,,,,”””,,,” “,,,, ”,,”,,,,,”,”,,,,”,”,””, ,Xxx”,,, ix”,”,,

>.,,,,,,,,””,,”,”,,,”>, ,,,,, ”,,,”””,,,,,,,,,,,, ,“”,,, ”,,,,,,,,”,,,,,” ,“,,,, ,,,, ,
..,,,, >,,,,”,,,,,,,,,, ,,, ”,,,”,””,,,””,,”,,,,”,,, ““,”,,,”,”,,,,”,,,,,”, “,, ””,,,,,,,,,

..,,.,,,,.,,, ”,,,,,,,,” ,,>,,,,,,, ”,,,,,,”,,,,”, “,,,, ”,”,”.,,.””””,,,,””,,,,,,,,”,”,” ,“”,,

I ,,”,, ” ~

1
s 1
0. s .

&
&!l!’WWJd



. - ,,+,-,;,>,
.,,,.,...1

O.i

g

~ 0.1

r

-16-

,:.
. . .

. -,
... . . .

.. :

.. ,.

. :.
,,..’

,,.

. . .

,.

,:. .L,”,,,,,.-,.-

..,:,

.,
.. ..

., ,,.

Fig. l(c). “. ,,
,,.

,....,,

. .,. ,,
,, .,,,!

-,..
,,

F . . . .

. . . . ,.,,

. ,,

.,, ..,,

-..,,

. . .

. ,.

.,,
. .... ..,,,,,,.

..,. ..__+
--

- ,.., .,,,u



-17-

P ,10 .m
Time(we)

Fig. l(d)



-18-
,.

. ::”:- -.
...... .,.
.,,,-,.-,
..,....
. .,,..-

-, -c-:
..” -:ls2,~$J

,. ...,-,,,,...-,



1 I I t
o 0.z 0.d 0.6 D.8

nme(s%1



-20-

1.0

1
I

;

j
$0,5-

:.f

o I
o 0,10 OK’

Fig. 1 {g)

.
..’, ,

~ ,,.=]

:.:’-



-21-

0 0,2 0,4
lime (w)

Fig. l(h)

v’

(
0.6



:,.,.
,..

,. {:.:...



-23-

The survivor function, the complement of F(’r), or

(5) ~(’r) =1–F(7) =prob (T> ~),

is the probability that the neuron will not have fired by

time T.

A third function, the hazard function, measures (in

the terminology of renewals) the instantaneous risk of

failure of a component known to be of age T. It is given

by

(6) Q(’T)= f(T)/%’_(T) = f(T)/[1 – F(T)].

In the neurophysiological context, the quantity cp(T) AT is

the probability that a neuron will fire during the time

interval AT, given that it has not fired prior to the time T.

This function is called the “age-specific failure rate” by

COX (1962). In the neurophysiological literature, it is

denoted as c(x) by Poggio &Viernstein (1964), and called

by them the “postimpulse probability”; the same function is

called “conditional probability” by Goldberg et al. (1964).

It is also denoted as k(x) by McGill (1963), who points

out some earlier synonyms for the same function: “IRT/OPS,”

“conditional density function,” and “hazard functional!

For a Poisson process the hazard function is a constant

(Fig. lb, bottom). Other processes display positive or
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, .,, .-: L“.”‘x.,-- ,-,,-,,,,,,,,..
negative “ageing” accordingly as V(T) increases or decreases.:+.. .. ....,,.,.~.,. ,,-...,,..-,,-,
with T . Interspike-interval distributions from pacem~~gxy=~~~...

. ...-..,,

.. . ...-,;.
.,,. .-. ..,, ,:,

neurons, for example, characteristically display posit~~.~:’.~~. . ,..,,.,,,.. ,-,.--y
ageing (i.e., an increased “hazard” of firing as a futietta~-;:i:!.,.-,.,~-..........
of time since the last spike; Fig. la, bottom], whereas

,. ......!..,,.,:,,,,. . ....,...,,,...... ..
-., ,

long-tailed distributions, such as those obtained for
.-.,.,..,,
,.,..,,,.,,-.. ...,.-

. . . ,,...>

some neurons in the auditory system (Gerstein ~ ~andel.br~.t~...~~”!,.,. .+..

1964), display negative ageing (Fig. lc, “bottom).
.,.,.,-....,........

Note - ........,.-.,-
.......

that the estimate of the hazard function l,osesPree~:~~:$:_~~s
.,,,,...,,,.,.. ,,....,+

for long intervals (Watson & Leadbetter, 1964a, 1964b,),”~:;;:,.r.,..,,,,.. “““::::%!?
Summaries of the interspike-interval distribution, are”:.-:,::

-.--...-,,...-.,..,-..
furnished by various scalar quantities; estimation of ehese ““.,’::

.,.,,,.J
scalars “from finite smples of spike–interval data’,&~$’~:$@~::3~*

+_., .,
..............=.-...‘-

differ in any essential respect from estimation iisin~ ti~p$e-=
..,..--,,M.-....s-

.:<.:::z.;a
data from any other source.

.,,.,........._.._J.__..
Useful quantities are,,,themean -,,,::.:

....,,,...,-

interval p, the interval variance ~2, the standard ”deviation “::’.:..
.,,...:

., -:.:
a, and the coefficient of variation OIP. The mean firing “:...~,...:.

rate P is defined as the reciprocal of Ehe mean ~~te~+~~y:~::i~~~,%
..,,...

Standard measures of skeyness and kurtoais are ,oft,.gnusefll~ ...~,~~
. ...,.-,A

for describing and classifying in’cervaldis.tributiatts,..........-.....ti.
......;.

,....,..., . ..+!.,,,.,

“,,~~“!”?$..
Order-dependent Statistical Measures

.,.. .
. ,.,. . . .

It is of considerable neurophysiological intues~”g~:>:,”” ::<
.,, .,,

determine whether or not successive interspike interv+ls are ‘~~
.

independent in the statistical sense? i.e., whether or not

the spike train can be described as a realization of a
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renewal process. Cox and Lewis (1966, pp. 164-171) discuss

two classes of tests for independence of intervals, one

based on sample serial correlation coefficients, and the

other based on the spectrum of intervals. These authors

state that “this is a difficult problem because the null

hypothesis is very broad and the alternatives usually not

at all clearly specified, and also because the associated

distribution problems are hard.” Moreover, if the intervals

are not independent, such tests offer little information

about the type of dependence, and they have so far found

little application in spike–train analysis.

Aside from their-use in hypothesis testing, certain

statistical measures have been used to describe and quantify

serial dependence among interspike intervals. We call

these measure order–dependent, in order to distinguish them

from those based solely on the interspike–interval distribu–

tion, discussed above.

recommended by Cox and

have not been used for

The methods of spectral analysis,

Lewis (1966; see also Bartlett, 1963),

analyzing spike-interval data, but

their potential utility deserves extensive investigation.

Serial correlation coefficients are statistics based on

joint distributione of intervals, and another set of measures

is based on intervals between nonadjacent spikes. We describe

here the latter two classes of techniques.

Use of the joint interval density for spike-

train analysis was introduced by Rodieck, Kiang &

Gerstein (1962). The data are displayed in the form
.

of a scatter diagram, in which the length of an
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, ......”..+

;Tj.,:,:.-,;.,L _,:a

,—,, -+ . .. —=.-.

.,.. -. .,., .Y,, .= *

tnterepike interval is represented ”ky.the .abs.C:%Ss
. -=--..,,..-

length of the next interval in the”:~eko~fl::$~’?~h~w. ........,_..,.—,,.,,.,._#.’-~.,,,,,

Each point on the diagram then”represents a pair”~:~?~,...,-...-
intervals. .An alternate formic the matrix equ$%a$e

Smith & Smith (1965.). If successive intervals &e’:i~ ___
.-.,.,,,.,&.+

distributed, then the normalized frequency distri.bki;~!~,,, ,,,,—.,,,,-,,.,.,,..,,,,,.,..,-,,,,.,,..,.-...
the ordinate is the same for each abscissa valtie, &h vice’

----.,,,”...,,.,#,,,.,..-,,,.,....._”..
,..,

versa.
,,........

This implies that the corresponding row tidco~- ‘~:.~~~...,,,...,

means in the corresponding joint interval histb~=’~tik~~~- ......
,,.,...x

constant expected value.
,,--....,

An obeerved constancy& f”r&? arid .-:
.....

;;;%
column means, whichis anecessary condition for tnck&ndence :,,,

,..,

of adjacent intervals, has in practic”e been used as +“-sufEicienti ’’;.,
,,.

test. Departures from independence are reflected mt”only in -..,.,,

these meane but also in the symmetries of the scatter diagram ““”;
. ..,;

,, .,
itself. For example, an overall “upward” trend in th~ jOint- :,-..,:,

interval scatter diagram (ae illustrated in Fig. 7 o~ “,.,.,,,,,,.,, ,,,,;+
,...$.,.,

Rodieck et al. (1962), units 261-1, R-4-3.O, and 246-Q’ ~.~.,~”::‘-:~~
. .,.

,,,,4indicates positive correlations between successive ins~~~~e~:,.~>~
,,,.,,,.,,:,,

This means, loosely, that short intervals tend to be fuU&&&?,!;;S
.... ‘:.r.:+3

by short ones, and long intervala by long ones.
.,

A ‘*d;~~~%iji;~

trend would imply negative serial correlation. The Wct+l%’” ~ ~,

2
related case is illustrated by unit 259-2, in the S-”’fx”~@ti;j{..~”

Aj:::,,::
The corresponding row and column meana are shown in F&. ‘8;”’”’:::’+’:$~

. .
of the same work.

~.-4...“q..,.
3

“’”aA quantitative meaaure of such correlation is f~ished: .-::;>

by
,,..:,.

the serial correlation coefficient of interval lengths~ ,, “’”qj,..,...~’
,,,,,:,,
,.’m:

“..$$$3,,
““’“::EJr*y

.
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as follows: We

interval lengths, of lag j, by

(7) Cj = E[(Ti – IJ(Ti+j –

define the covariance of

dl(j-. ..,-ly 03 lY . ..).

where Ti is the i‘h interspike interval in an (infinite)

stationary train of spikes, with mean interval p and variance

2
c. Then the serial correlation coefficient P.

3
of order j

is the ratio of the corresponding covariance to the interval

variance:

(8)
‘j

= Cjloz.

In a finite sample, the mean u and the variance u
2
lnust

be estimated from the sample data. To avoid the slight

bias introduced by use of sample mean and variance to

estimate the corresponding population parameters, more

complicated formulas are suggested by Cox and Lewis

(1966, PP. 89-92).

The serial correlation coefficient of lag 1 furnishes a

single scalar quantity as a summary of the entire diagram of

the joint interval distribution of lag 1. Joint interval

distributions of larger lags (i.e., for nonadjacent intervals)

have not been used in the analysis of spike trains; the cor-

responding serial correlation coefficients, however, have been

used extensively. The set of serial correlation coefficients is
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. . — .,,,.,.:

., ...,- , .,,...&.,

. . . ~w,.”-,e. ,

-- ,, -- . . . .

usually called the serial correlogram; it has sometirnes.~’~~~a
...,,..“-4.”:

(e.g., in IXagiwara, 1954) been called the
.,.,-,,.,--..A

“,autocorrelogp~.~~~
. ... . , .“ . . . .

or
-.... ..-.”,-

“autocorrelationj” terms that we reserve for a dii!fer,~tr,c;~

function (see below).

The expected value

of all orders (lags) is

of the serial correlation

approximately zero if the
..,.- .+,. -,, ., ,...,a

,. ... , ,., -,W

arise from a (stationary) renewal processs i.e., if the:,.m,,,.,,.,,,,,.-,.,,.,..,,-.
,..........-.:,,.,,,,..,,,-,,..,.,.___

intervals are drawn independently from a e?mmon distr”ihtit~dti.:x.,.M,,.—- ....

For large N, for a renewal process, the quantity Pi/(N -’1}~’::~~.,,.,..-”,,..-,*
.. .,..,“,.

has a unit normal dietribution. However, the distributiori~%$~~~,.--,,.
. .

the sample serial correlation coefficient iS not known for.:.:;,;.
,,.-...-.,

. ... .. . ...,,.
. ,.- ..,,,.,-

small samples, and the sample coefftc,ikntsof various lag~ .........~.,..-,-...
.,,.,.....-,.-

are correlated for.moderate sized samples (Cox

p. 165). No test of independence of intervals

is based jointly on several serial cmrelation

(P. A. W. Lewis, private communication).

,- .. .. ,. .

..--. y
coefficients.. .,:-,

... ,. -., &
,,-..-, ., . .,,._

--- --, - ,,., ,:*

.-, ., ....-,...,+
.,.. ,,,,.,-, ...eJ.

One useful expedient, however, ,is,co subject the ‘sti$~a:i;~=.. ......-...,7,.-,,,,:.-T
of interspike intervals co random shuffling, which destroys’ “-<

.
serial dependence but Preserves the order-independent statistiafs-

...”
-

of the sample. Shuffling thus converts the sample to one
......
-

from the corresponding renewal process. The recomputed
.
...,.

- ..-,
serial correlogram for the shuf,fled train provides a control .:..:- . .,-,,--

-..-.,-,
case, in which the departurea from zero of the serial coti-

.,,.,..,,-,....,,.,..,.,,...........
.-.,..,-..... ..,

relation coefficients are in fact those due to ra?dom. fhctl~~~-:~~- ,,...aew,,-
-.---

tions. The net departure may be measured, for example. by _.~.
- -.

the sum of squares of the coefficients.
........

In principle, the .--
. . ,

shuffling and recomputation can be repeated at length, t~
.
....

~-,&

..

,-=

.,
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provide an empirical sampling distribution of the sum of

squares under the null hypothesis of serial independence.

From this distribution, tests of the independence hypothesis

for the unshuffled data can readily be constructed. This

kind of procedure is discussed by Cox & Lewis (1966,

p. 165) as a permutation test of serial correlation. A

refinement discussed there is to replace the observed

interval values by ranks or exponential scores. In this

way

for

the sampling distribution can be

all for a given sample size.

The most frequently encountered

computed once and

source of positive

contributions to the

a long-term trend in

increase or decrease

serial correlation coefficients is

the data; a sufficiently great monotonic

in the firing rate over the time of

observation will contribute a positive component to each

serial correlation coefficient, out to lags of arbitrarily

high order. Monotonic trends, of course, are a form of

nonstationarity; they are discussed further in a subsequent

section.

In a stationary point process that is not a renewal

process, the serial correlogram furnishes indications as

to the nature of departure from independence among intervals.

Local trends in firing rate will introduce positive contri-

butions to the serial correlation coefficients, primarily

to the lower lag values (Hagiwara, 1949; Junge & Moore,

1966) . Cyclic variations in firing rate, for example,
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..,., .
---- ~?

produce a damped oscillation in the serial Oorrelogram. -::,~:
...,,..-

,..,

which starts at.positive values. Somewhat similar oscil- ‘(;
.,.

lations are produced by fairly regular occurring burits “’”’~~
. ..:

of spikes, as exemplified by medullary respiratory meurcbns.:-.Z

Irregular bursts of spikes, such as have been described
,.,,,.....

“.::::3.
by Smith & Smith (1965), are characterized bF posit&b.,:::;:,”,.:,

““+
,,.,,...~ ,,,,

serial correlations for low lags, followed by slightl~.~::,’.::.’i~~
:..,,.,:,,/.,... .,.,,

negative and then zero correlation coefficietit.s’.AL.tie&%:,::---‘“””“~%?,,...... -.:,
+

nation between long and short intervals, as ccmumotil$.”:@6$~: X
,...,.“,,.. ,,.,.,-.‘“

....’....Tin certain cells in’the dorsal column nuclei {kasq%:$~,~,,,~$,.:~,
,,. “~~~‘A“.-:!!,T’,

1962) or in locust wing-muscle motor neurons (Wilson$ lM4~~’;~’~!C
.... .+,,

~+
gives a strongly negative first serial correlation coefficiiri$~:;

..,...+
with subsequent alternation in sign of the coef$iaients of ~?;.+.,:,
higher order. Other types of patterned activity have

-,.,,,,,,.,,,,.

corresponding signatures in the serial correlogram.
.,-..

some -,.,,....
....

examples, from computer simulations, are illustrated in
,:,,.,,.
.. ,;

Fig. 2.
,,,.
...,..

It must be emphasized that both the jobt interval
-,,...~.,,,.,,,

histogram and the serial correlogram must beinte~ireted ~~~,:,;

with caution, and in conjunction with other statistical
.,,..,,.....,.,

The positive contribution to low-order-correlatibnl;;.
,.-,

measures. -..!.,- ,.,.,.
coefficients due to local or global trends in fkrkrt~rete ~;,,:~

;:,:

may mask any negative correlation between adjacent :intervala ~
. ,.,.

that would otherwise be apparent.

may clarify this situation, but at

of statistical reliability. A gap
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Fig. 2.

Typical serial correlograms. a. Independent intervals

drawn from a Weibull distribution, with pdf aP(Px)a-l exp –(Px)a;

-1P = 15 sec , a = 0.6, 2161 apikes. b. Simulated neuron

producing irregular bursts. Resting level of membrane

potential –70 mv, reset to -100 mv after a spike; exponential

–1
recovery with decay constant of 6.93 sec . Asymptotic

threshold +0 mv, reset to –20 mv after a spike; exponential

-1
recovery with decay constant 3.47 sec . TWO input channels

producing 18.5-uN EPSPts: one channel with mean firing rate

2.O/see, the other with mean firing rate 2.1/aec; standard

deviation of intervals 3% of mean. Cell fires with mean

interval 2.6 see, standard deviation 2.9 see, with sample

389 spikes. c. Simulated neuron producing more regular

of

bursts. Similar to caae b, but with standard deviation of

intervala in input channels 0.6% of respective means. Cell

fires in bursts of four or five spikes; interapike intervals

within bursts 0.5 to 1.0 see; bursts start at intervals of

approximately 10 sec. Sample of 424 spikes has mean interval

2.4 see, standard deviation 2.8 sec. d. Decelerating train.

Intervala drawn from a time-dependent normal distribution

with W(t) = 0.1 - 0.02 e-oO1t aec, u = 0.01 sec. Sample

of 2447 spikes. e. Alternation between long and short

interval lengths. Intervals drawn alternately from distribu-

tion with mean 0.11 sec and from distribution with mean

0.09 see, each with standard deviation 0.015 sec. 5000 spikes.
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Fig. 2(a)
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Fig. 2(d)
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introduces an exceptionally long interval, may grossly

affect the interval variance and seriously distort the

serial correlogram; this effect is most pronounced in

pacemaker neurons (small coefficient of variation of

intervals) . On the other hand, effects of trends and gaps

on the’serial correlogram are much less pronounced in data

with a large inherent variability (large coefficient of

variation), such as a Poisson process with a time-varying

rate parameter, or neurons with highly irregular firing

times . It is important to measure and correct for these

distorting effects since significant information about the

physiology of the neuron–-such as refractory effects,

persistence of synaptic effects, etc.--may be uncovered

through correlational analysis of successive intervals

(Firth, 1966; Junge & Moore, 1966; Geisler & Goldberg, 1966).

The use of ranks or exponential scores greatly alleviates

the effects of gaps in the record. The use of the estimated

spectrum of intervals overcomes some of the effects of trends.

The tests for independence of intervals based upon the

spectrum of intervals, as described by Cox & Lewis (1966,

pp. 67 et seq.), aPPear to have been neglected by investi-

gators of spike trains. The estimated spectrum gives a

single test for independence based on all of the data, and

thereby overcomes the obstacles mentioned above to the

interpretation of the serial correlogram. Computation of

the spectrum has been greatly facilitated by a recently
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devised algorithm (Cooley & l’ukey, 1965), which has “beeri” . .:,,.,..
,..,..,’ ...,

incorporated in a set of computer programs by P. A. V?. , ..,,

Lewis (Lewis, 1966) for the statistical analysis Of se~~
.

..::.;;.!::::”,j;,j:
of events. ,,,,,(,

‘i‘::,,..:,,,,J

‘..”-l

Joine interval distributions and the correspotidi~” ,,,:,’;~,’.;
.i $..~...,-::..,<y.-,f.:,::,<.:.,.,,...:+~;>>.c

serial correlation coefficients involve time in”temals;*~*E?”..,\;;,f;,,,,.:,:,~::,;.’.,,,,,,,,::,.,
,,.,.,,;f!

are defined by two successive spikes. The second class..ti~;:;:,?;ti:;,,$,..,,,,,,,,,.,,,.,,,,,..
“h. ,...’”

order-dependent statistical measures that we di.sctissiR~~~y+~
.,-+4$
-.r

,.,,,,

time intervals between nonsuccessive events. Denoting *$. ..::.,jd.~j
!;:,:!t

a first–order interval the elapsed time from an event to &he ,.,,,.
~::;~.:,,’~J!J

next following event, we may define a second-order LnterWal “ :::;.~

.’!’1~
as the elapsed time between an event and the second EoIJow-

ing eventf etc. Annth-order interval isthesumofn “’”‘: $’”

consecutive first-order intervals, and is spanned”by (n + 1) ; . .jif
.,,

consecutive spikes (see Fig. 3),
i:...,.,,..

The probability density of the n‘h-order intema~ i.~ ,.,ti,+’”
.,4

designated fn(7). The interval density far successive
.

,.,.-‘:

events is thus the first-order densfty: fl(~) -f(?). ““”., j

In the special case of a renewal process, the lIi@% ‘~:”
.*.
y

order densities may be obtained by successive convoluttdns ..:..

of the first-order density because the intervals are “<”’ .::i,.,i,k>
?’::$~

independent. Thus, the second-order interval density “is

:!

‘: ;,:“:,.,,~
“1’”’,.,

given by the convolution integral .:i!.’i:,*i,,,,,:Wrti,.,!,.
..:~~,.

= ~rnf(t]f(’r- t) dt,

;:,,!-p$:w
(9a) f’J~)

.

0

.,:
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Fig. 3.

Higher-order interspike intervals. A first-order

interval is the time difference between adjacent spikes.

A second-order interval lies between a spike and the

second spike following, etc. Note that an interval of order

n spans n + 1 spikes. See text.
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and in general we have the recursion

(9b) ‘n+l(’) ‘~~ fn(t)f(~–t) dt.

These equations do not apply when successive interval dura-

tions are not independent.

A related function is the renewal density, h(r), which

specifies the probability of encountering any event as a

function of time after a given event; i.e.,

(lo) h(~) = ~~0 prob [an event in (T, 7 +LT)

1 an event at 0}/AT.

Since any event encountered must be either the first,

second, ..., etc. , event after the event at time O, it is

evident that the renewal density is the sum of the interval

densities of all orders:

m

(11) h(T) = ~ fk(7).

k~l

This is illustrated in Fig. 4, in which is shown the renewal

density (as estimated by a histogram) from a sample of spike

activity of a computer-simulated neuron; together with it

are displayed the corresponding interval densities of the

first four orders.

In spike–train analysis, the renewal density is often

called the autocorrelation (Gerstein & Kiang, 1960), since
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Fig. 4.

Composition of the autocorrelation (renewal d~iU%~ty)..
-.

Computer simulated noisy pacemaker with inhibi@rY sYnaPtic

input. Mean interspike interval without inhibit%~~t,4? ‘“

see; Poisson arrivals of IPSP1s at mean rate of 41ae,ji$

~axiwm hyperpolarization of IPSP:a normally di~trib~t~:i~.

with mean 5 mv, standard deviation 1 mv. Mean intersp%ke:..,$,,”....,,..1...,”.

internal 0.54 see, standard deviation Q.09 Secj ~~OfJ*Pg~~S.

a. Autocorrelation histogram. b. Interspike-interval”.

histogram. c–f . Second- through fifth–order interva~, ‘“

histograms. See text.

,,,
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if the spike train is regarded as a signal of zero amplitude

everywhere except where a spike is present, and if each spike

is represented as a Dirac delta function, then the renewal

density corresponds to the autocorrelation as ordinarily

defined for continuous signals. In the usage of Cox & Lewis

(1966), the renewal density is one of a class of “intensity

functions.” Another synonym that has gained some currency is

“expectation density”; it is used by Poggio & Viernstein

(1964) and others, following a usage introduced by Huggins

(1957) . Yet another synonym is “post-firing interval distri-

bution,” introduced by Lamarre & Raynauld (1965).

Another property of the autocorrelation is that it

“flattens out” to a constant value; i.e.,

(12) Lim h(7) = l/M!
T+.

In general, this limit is approached slowly for pace-

maker neurons (narrow interspike–interval densities), and

more rapidly for spike trains with greater variation in

interval length. The limiting value is attained for all

values of T for a Poisson process; it can be shown, in

fact, that a Poisson process is the (ordinary) renewal

process having a constant renewal density (Cox, 1962).

The representation of higher+rder interval densities

as corresponding convolutions of the first-order density

(Eq. 9) holds only for independent intervals. If there is
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s. .: a
serial dependence [as measured by the serial correlogm~}v ~

more complicated expressions are required, as given by ..

McFadden (1962).
-.-,

Thus the stun of the interval-.dansi-~8 ..... .,.,,,,.,----,-z,..........“
of various orders. [the autocorrelation) for two spik&W&W~.;~- ,.,..,-..,...

“’-’’’~’’=%%!#sequences having identical interval distributions..ti.ET~:+-;
..--..,,.,,

different if in one train the intervals are independe~~:.:::”

(i..e., a renewal process) and in the other they are dependent

Heqce it is possible to compare the observed auto.correction
,

with that predicted under the independence hypotheses as a

test of that hypothesis. One convenient

is that of prolonged random shuffling of

discussed above. The autocorrelation of

then represents a control case of serial

Discrepancies between the unafiuffled and

computer method

the intervals! as

the shuffled train

independence.

shuffled autocor-

relation not only furnish a test of serial dependence, but

may also indicate the nature of that dependence. ~~~ . .,

Shuffling may either enhance or flatten peaks itithw.:.

autocorrelation, For examplej if in.terapika-interval ~ .

lengths exhibit negative serial correlation, peaks i~$$i~:”

autocorrelation are generally broadened by shuffling.;~:.

the other

shuffling

tion. An

hand, if interval lengths are positively’corrti~~~d

of intervals may, sharpen peaks in the autocorrelae

example of the latter effect is shown in Fig., 5* ,

in which the original interval sequence was generatedbya

three-stage semi-Markov process (Cox & Lewis, 1966, P. 82) }“

according to which relatively long intervals were more

likely to be followed by long intervals than by short cmaai

and vice versa. ~:
‘

.,. .+
: “’...,.,.‘.’;,-
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Fig. 5.

Effect of shuffling on peaks in the autocorrelation.

Intervals generated by a semi–Markov process with three

states with mean intervals as follows: state 1 (short),

.09

All

.01

see; state 2 (medium), .10 see; state 3 (long), .11 sec.

intervals normally distributed with standard deviation

sec. Transition matrix

(
0.70 0.20 0.10
0.45 0.10 0.45
0.10 0.20 0.70 )

is such that s long interval is most likely to be followed

by a long interval, and a short by a short, Mean interval

0.10 see, standard deviation 0.014 see, in sample of 2000

spikes; first five serial correlation coefficients: 0.251,

0.184, 0.085, 0.071, 0.040~ After shuffling of intervals,

first five serial correlation coefficients were -0.018,

0.017, 0.021, -0.041, -0.004. a. Autocorrelation histo-

gram, unshuffled data. b. Autocorrelation histogram of

reconstructed spike train after shuffling of interspike

intervals. Note sharpening of peaks. See text.
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““”, ”,,,,,,”””,””,,,,, ,,, ”,,”,,,,,,,”

“,””” ”,,””,”,,”,””,,,,,”,”, ““, ””,,,,”<,,

,“”,, ”,,,,<”,”,,”,,,””,, ,,”, ,”,,,,

““”””,””,””,,,””””,,””, “x,”,,,”””,”,

““,”,,””,””,”,”,.””,”,”. ,,,, ,””!(,

“,”,””””””,”””,””,”,””,”, ,“’””<

““””” ””””” ””””” ”,”””,1 ,.”!, ,

,,”, ”””<””””””””,<,”,, ,“

“Xr””x”rxx”r, ”,<, r
,,, ”,”,,<”,,””,,”””,,,,,<..

““”, ”,”<,,.,.”,”,,
,,,,” ””,,,”,”””,,,,,,”,,, “

,,”!”,, ”,,,”,,,,,,,,,” !,”
““,,,, ”””,,,,,.,,,,,,,,, ,,, ””,,”,,,

““”””””,”,””,,!”,,””””, “1””””,,,”””
“,,,. ””,,,,,,”,”,,,,”,,,””,,,”,, ,,,,,, ”,””

““, ””,,,,”,,,,””,”””,, “,”””,,,,”,”,
““”, ””,,”,”,,,”,,””,,,” “,,,,,””,.,”,,”,,””

“,”,”””””””,”,,,,””””, “,””,, ”,,”,”,,””,,”<.” “(,,

““, ”,”””””””,,”,,”””,”,,,,,, ““x,x,,”””

““”””””,”,,”,,”,”,”,”, ,,,, ”,,,””,,”,””,,”,,,

““, ”””,l ,”,””,”””””,”,,””,,”,,,”,”,,,,,,,”,,,.

X.. ”x”, ”x”xxx”,, r,,,,, ““,,, ””,”,,,,”..,,”,,

1“””””,””,””,,,,””,”””” ,“,,, ”,”,,

, “”””,,””,,””,,,”,,,, ,“, ,,”

,“,,. ”””,””,,””””,”,,,””””””,,”<,

““,,, ”,”,,”,””,,!””,,, ,

“X””xxx xr””r”x”r”,.”xr
““, ”,””””,”,”,,,

“,””,”,,,””,”,,,”,

“Xx”x”x””x, ”,x”rx,

“,,,,. ”””,,””,,,

,,””” ”,, ”,, ””, ”,,.”.,” ,

““””” ”””””””,,””””,”,,,,,”,,

,“”, ”””””””””,,,,,”,”,,” ,,””, ”
,,”, ””””,”””””,”,,,””,”,,,,,,,”,,, ,“,,,

“,,,,, ”,,,””””,”,,””,, ,,,,,, ”,l”” ,”,”,,,!,,. “,

““, ”,..”,,,,”,”,”””””,,””,,, “,,,,,,”,”,,”,”,,,””.,,””,

““, ”””” ”””l, ””””,””””””,. ““, ”,”,,,,,,,”,”,,,”,,”,” “,x””,

,“””, ””,”””,”,,,”””””””,”,”””””,”,,”,,,,,,”,,,””

,,, ””,”,”,”.”””””,”,.” ,“, ”,,”,”,,””,”,””.,”,, ,,

,“”. ”.”,”””,,”””,,,,,” ,“”,,,,, ””,,,”,,,”,,”,,

““”””.,,,,,,,.,”,,”,”, ,,,, ””””,,,,””””,”,””

“,, ””,”,””””””,””,,,”””””,”,,”,”,”, ,,””,.

r,, x”xx, x,rrxxxrxx,, ”r, ” ““x, ,””!,,

“,,”!”,”””,”,,,”,””,,””, ,“, ”””

XKxxx, xx, x,, ”x!rxx, r,

““”,”,”,.,”,””

“,1,,, ”,,”,,,

““””,, ”,,,.

,“”””,, ,,,

,,”,,,,

,“,, ”,”””,”,”,”,

““,, ””, ””””, ”,””””, (
““,, ”””””,,””,”,,,,,,,,, .,””, ”

,Xx,, xx”x, x”,, x”, ”,x, xxr” ,,” X,X”,,”
,“”,, ”,,,,,,””,,”,”,,” ,,x”xrx x,”, ”,, ”,, x”rx”r” ,“,,,,,,,,

“,,, ”,””,,,,,,””,,”,,” “X, x,, x,”xx, ,x”,, ”,. x ,,”, ”,”,,,”,,”

,,”,, ”,””,”””,,”,,,,,,” “,, X,” XX X”X””, X,, X”, ”, XX,,
,,,, ”,”,, ”,”” ”””, ”,”,”.,, ,,, ””,,,,l ,”,,,,,,,,,”,,” ,,, ”””””,””,,””,””,,,
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To avotd confusion it should be emphasized that t~e :,,”‘-$-,......,-,.. ,
+“i%:

autocorrelation is a function of time; the serial ,corr@c&4 :.$:
- = .;,QwE

gram (Hagiwara’s (1954) “autocorrelationlr) is a functieti-ti~t~.~,,,~
.,,,, ~f~: !..?

serial position of the interval, an integer. 1.The two ‘*- }~;
:4;,:., ;: .?,.1.,:

tions need not correspond at all. For example, a ‘P~C~~~~’: ‘;~$~
. ,,.:,j:

cell that fires at:nearly uniform intervals will haye a :,:,:,’~fj
,!,:,:/,:1

strongly oscillating autocorrelation, whereas the serial ~~~~“1
,:;,,;

““l

correlogram may be positive, negative, oscillatory, or” ‘..:.:r,:;
,,;~,.,,1,.,

;h;,:~,,

zero.
,,::4,,4,,,!,,,
‘:;j$:?,,,,,’‘;-~,g,
,:,.,’:,<,.

Long–term trends or slow oscillations in firing rates “’”~’’”.,,.,.!

are ordinarily not obvious in the autocorrelation, but’”eze
::.#$$:
.:+ ’71:.*.:&i.

more typically revealed in the serial correlogram. The@e “’”;:. ::;

and other effects of relatively Ion&term rate ~ariaC~<RS ‘. ,~~

are discussed below,
.

in the section dealing with the effecl$s: ;:-...,,,,
....

of nonstationarity.. ,,,i(,,.,+ ,,,,.,,

‘,,
,[ !

Description, Prediction, and Information .,.
.:jj$

Having presented certain statistical measures that

can be applied ‘to individual spike trains, we now introduce

‘,’,j;,g

I:”*

briefly some eoneiderations about the adequacy and util%ty,
‘;“:$?,,..,.,,;!y

I.

of statistical descriptions of the train.
,,.-1:

These consider- ,:f:j~~

,,,.,.!i:;
ations bear on the use of statistical descriptions both in -’:$g

characterizing and classifying neurons, and in comparing
,.,,,:2@
,,.,,:.

,.,:{<
observed spike data with those predicted by models.

:,:,(,!,,,,,
:.’.:?

The simplicity of statistical descrik?tion of a spike tmh ,,i;
,f:j:

differs widely from case to ease. A single parameter sufficew :~~~

.$
,~’-

:~!’<:$1’,,l;j!,.,.,,,..:,,+.,,+ .,+;
,.,,~.,:~,,,,.. ‘,.
:;[;
.!,,,:1:’
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to describe a Poisson process, whereas two are required for an

Erlang or Weibull process. If a spike train fits into one

of these categories, not only is the characterization of the

particular spike train extremely simple, but also the pdf

of the interval distribution (and therefore the hazard

function, autocorrelation, etc.) may be written as an

explicit equation. For less easily described renewal proces–

ses, the entire interspike–interval histogram is required

to characterize its properties. When successive intervals

are not independent, then much more complicated descriptions

are needed, except in special cases of highly patterned

spike configurations. When higher–order joint interval

densities or similarly elaborate statistical measures are

required to effect a reasonably complete description, the

statistical description itself is unmanageable, and its

practical utility is highly questionable. The limit is

reached, of course, when the number of parameters in the

statistical model

in the sample, at

justification.

equals (or exceeds!) the number of spikes

which point statistical analysis loses all

The relationship between the statistical properties

of a spike train and the information-handling capability of

the neuron is generally complex. Estimates of channel

capacity depend strongly upon the particular choice of

encoding scheme inputed to the neural structure. Once a

choice of encoding scheme has been made, then estimates of



channel capacity

statistics. For

encoded in terms

,.. .

-.56-

.,..-. ,,r.:

can be obtained on the basis of interval
........,.. :,,y.~.,.,,.i.....

example, if a parameter is thought to be

of mean

coefficient of variation

higher channel capacity,

firing rate, then a smaller
,,..,.,

of intervals gives rise ‘toa ;;::;;::;:
?..,~.‘::::;::...

etc . Interval statistics hbfi;::y “:

ever, cannot of

scheme. Facile

characteristics

.,
..,. ,:,. .,.,, .,,

themselves provide a choice o.fcoding-’.;:,,”:”:.

“derivations” of information-handlin”g”s’j”~j:,;”;..
;,,,:.,,,,.:;.,:.,.,,,

of neurons based solely or primarily on “

spike-interval statistics are usually misleading or.wora@+”:~:’,: ‘..

For a more extended discussion of these problems, the

reader is referred to Moore et al. (1966) and to Segundo

et al. (1966).
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SINGLE SPIKE TEAINS IN THE PRESENCE OF STIMULATION

In many neurophysiological experiments a controlled

series of changes in the physical environment is introduced.

We consider here the case of a repeated, relatively short

stimulus. In order to detect and evaluate the effect of

such a stimulus train on the train of spikes, it is now

cmmnon to compute a post–stimulus-time (PST) histogram

(Gerstein &Kiang, 1960). Specifically, the PST histogram

shows the probability of firing as a function of time after

the stimulus onset. As shown below, this measure is equivalent

to a cross correlation between the

tions and the train of spikes. If

effect on the pattern of the spike

will be flat (subject to the usual

On the other hand, if the stimulus

train of stimulus presenta–

the stimulus has no

train, the ~ST histogram

statistical fluctuations).

does produce a time-

Iocked “evoked response” in the spike–train pattern, the

PST histogram will

in

at

be

a PST histogram

that particular

associated with

histogram indicate

show deviations from flatness. A peak

indicates a higher probability of firing

time after stimulation and can presumably

an excitatory process. Dips in a PST

a lower time–locked probability of

firing and often are associated with inhibitory or refractory

processes.

In interpreting a PST histogram it is obviously

necessary to decide on the statistical significance of the

observed deviations from flatness. A simple method that



. ..L
-:.,..,.,
...,,,.,,,,,,“
,.,..
. ‘u,,
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.,. ...

... . -,,:,.- .,-...--.,,.....
-::.“#;!

has been used (Weiss, 1964) is to compute the mean square :i-d”~
., .,.-.*-2Y&p

deviation of all bins from the mean level of the histogram. ..-,,

Some criterion value for this number can be chosen to~~$

distinguish a “flat” PST histogram from one that shows a ,~,,
,.,

weak time-locked response pateern.
.:.. ....$..-.i&>~*y’

There is some difficulty inthis type of significance .1:
.-,,

‘test,however, since successive bins in the histogram may ;,”.,..,,-...

not represent independent

each firing of the neuron

period, there is always a

relation between adjacent

. ,::j!
quantities. For example, since

.
- -,!

. .+4J,<.
is followed by a refract~ry ‘ ., .>~$

tendency toward a negative cQr-
“ “’:.;4

bins in the histogr+. An ~piricel
,,.,,,,,,.,,.,.,.,.....,.,!,:.,:

control case can be constructed by randomly shuffling the ‘ “:~~

intervals of the spike train and computing the correapontlkn~ ~
..:.
‘.,

“flatf+PST histogram.

..
The distribution of mean square ..,.

,,,,,,,

deviationa from mean bin level can be obtained from a set ““’‘1

of replications of this procedure, “and the criterion value . ;,i,,.,.:
.,,,:,.

can then be chosen as usual to satisfy a specified error
.:!d:.,1,,k

“+

.;~,,::&

probability.
,,,,,i,j ;;

A control case can also be constructed usi~ “ ,.;;+
.:’.;j:l

fictitious times of stimulus presentation in a portion @“:
..”.,,4=q,.7.,,,,.;,,;~;il:~

t
““‘“‘+’?+i!;:,...,,,,)!4,.,.:

record where no actual stimulation were presented (Garsgeiiij .:’’:’;~

A:,;;
,.:., .;,:./,:,,,,,:rj~>,;

1960; Burns & Smith, 1962). ~~~.,:,.aw.,; ,,-~.<..’
Because of such correlation effects, it is necesa~y ‘- ;,’;q$

,,, ‘;1‘:L,+
to verify that features in a PST (or eimilar) histogran:ih$vt ,,’:.,.:.j~$

. {,.pi
are suspected of having significance are not simply artii’ikCtS ‘“~:

;,;.J ;,
of the choice of bin width. Two techniques that may be “:.,.7X5

, T
helpful are (1) recomputing the histogram with a different bin ~:.’~{

1,

,:3?
“,)‘::;~$
...,,,..,
... ..,,~:‘,,:’..x.;,;,.

~~,:-,’:,!,.?,:..,,,~ ,,,;;,
.,:,:.,:,l,,:,,,.,!,$
,.w-~;h?



width that is not a

and (2) calculating

Meaningful features

existence of “wide”
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simple fraction of the original bin width,

the autocorrelation of the PST histogram.

should have a width of several bins. The

features in the PST histogram will be

shown by large values near the origin of its autocorrelation

function.

Another way of analyzing stimulus effects on a single

spike train,is to measure the elapsed times or “latencies”

between stimulus presentations and the earliest encountered

subsequent spikes. Latency and PST studies are discussed

in the review paper by Moore et al. (1966).
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TWO SIMULTANEOUS SPIKE TSAINS
,--,1-3,.-.,.-,..,!..-.. ... .. ..-—.,
-..,,.
. .-:T,1,..-.;

The Problem of Functional. Relationship
....
. .,,L.........

- ,,-.-.+
It has become increasingly feasible to i’ecordeP~ka:.*~n*~~lX~:~.,...

..,!:
simultaneously from several neurons (Gerstein and Clark;: 1S64; -~~;:..,.-,-..,,
Simon, 1965). In the interpretation of these Si~ltaneOU9 ,.:::;

,..,

....
spike-train recordings, the trains may be.compared by pairs.

* ..
,...,!.

The first question to be asked is whether the twc””~~~~”~sof
-...-e.,-!

.,....
spikes are independent. More specifically, we xied.tormake .-,.,.

.,,,-,..
.-...

a statistical test of the null hypothesis ‘“tluittbe’tvio.’traina ).~i~.
. ,,.

are drawn from independent point processes. ‘fhiSwould imp~~ ;.. ...“...,..,,.
that the two neurons are functionally unrelated.” The test is ~-~~..,,..-*

-,-,..
accomplished, in principle, by computing a histogram, which ~;.:.

...

estimates a suitable function (e.g., either the cross density ~~~~~.,
-....

or the cross correlation function, described ‘below}l and ccsa-
-.................,....

paring the estimate with the predicted function as based on ‘-;:.-.,:

the assumed independence of the two trains. If the observed -~~
,.,..,.,

.,,.
and predicted functions differ significantly, the null hypotheai~it:

.,,,

is rejected, and the trains

An observed dependence

arise from one (or both) of

.“

.. . .

are considered to be dependent. ; ;;...
-:,,,::~

between two spike trains can .,,.$,
..,,,...”.

two sources: (1) functional ~,~;’......
-,- ,..-

interaetion and (2) common input.
,.,

By functiontil interaq%$,~g$:,,.:~~~
..:., ....

we mean any mechanism by which the firing of one neurowi”.’...;:,:%
.,.,,,.,.!. ...,,

influences the probability of firing by the other neuzoii.:-:”’:;.’....

Such mechanisms could be synaptic (whether

through interneurons), ephaptic, or due to

direct or meii%ated ‘“;:,,, ...... .,,...
“field effects.” ‘.-.:,

‘“ii....
*statistical measures for the concurrent intereomparison ...-’”-

of three or more trains are currently under investigation. ...-..,.,.,,.,..-..,,
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By common input we mean any mechanism that simultaneously

modulates the firing patterns of both neurons. Sucil

mechanisms could involve synaptic contact from branches of

the same axon, or field effects from a source other than the

two neurons. It must be emphasized that long–term con-

comitant changes in firing rates, if shared wholly or in

part by two neurons, constitute a form of dependence, and,

if sufficiently pronounced, will be detected by statistical

test procedures (see discussion below, on Types of Dependence).

Independence: Consequences of the Null Hypothesis

According to the null hypothesis, spike trains A and B

are independent in the mathematical sense. This means that

spikes in train A occur at moments taken at random with

respect to train B. In relating the two spike trains we

may therefore use some mathematical results about single

point processes observed from random moments in time.

One such result concerns the distribution of so-called

recurrence times, which are defined as follows. From a

random instant in time, we denote by v~ the time until the

next event in a point process, and by V_l the time backward

to the most recent event in the point process; VI and V_l

are known as the forward and backward recurrence times,

respectively (Fig. 6). Each of these times has the same

distribution with the pdf

(13) gl(T) = [1-F(T).]/w= $(T)/u,
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:.=.,.:,.,,,..,:.,~,,......—,--,.,-
. ...,.!...

“,. . ,- . :. +.,.., -,,

Recurrence and waiting times. ... . ,,,

,,,.:,<,.,,
spikes. If the events in t

!.
time, then VI and V_l are the (first-order.)...fo

backward recurrence times, respectively; V2 and ~_~,,%~e ““”~”~,~

the corresponding second–order recurrence t~mea> %... lf .-,,~.,
...

,..
!,. ,-..,,~..,:

train A is a spike train, then ,(in the usage of this s?~~~]:f:~~~~~:,,,.,,,,...,,,.

the

and

corresponding time intervals are called waktin~
. ,.a~!

timesa, .,:.,
....-,-’.

are designated WI> W_l~ W2, etc.

,.,

,,

,.,.
..,.,
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.. . . . . ...+
is the cumulative probability distribution of the interv~lg~~

and ‘X(T] is the

for both renewal

McFadden, 1962).

In terms of

., . .. ..
. .

survivor function. Tk@&result is:.

and nonrenewal processes (COX, 1962;””:‘ ,,,-?~~~?.~~.,..-&..=.,

the time from a randomly selected spike in A to the innnediatiiia~~h
..-:,:

following, or to the immediately preceding, apike in B i~ ...””’‘1:?,
,.,.w-,

.,...e..

distributed with the pdf
......,,-“....

=,,
.“..,.,.....Y.%+’.

--++%

(14]
--:::25?

ql(~) = ~_l(T) = [1 – ,YB(T)l/UB ... .. . ... *&
,,..

‘--’=+,...:,,.,....=*,+..,.,.,-.,.....~
‘,, ... ._

if the two spike trains are independent. A similar relation--:.-::-,-,.,......:.
ship holds, of course, for the times between any spike in B

,.....,,..,,,,,,
-..‘i

and the neighboring spikes in A,
,..-,,.,.---.--M”-

with the appropriate .change-;-.~
..-,,..,,.-...U,...,.. ...,,.____

of subscripts. .,,,.-.—..,..,-.,_-....,,..-... ,..,......“.ws

Generalizing this notion,,we “m+y-tike..the correspandin~:~r.~~
..-...-.,,,.,,,...-,”e

.,,.,,-,-,..,-
- -. ,,. . ..,,-

measurements from two simultaneous spikeErains, whetHar:.O&-..7:~.:.,...,.,,,...--,...,,,,.,,,,,,,,..._—
not they are in fact independent: ‘tie~b;i~ate as .W.~-?.b’<”T~<~;~L

“-..-:.:--:.-.2
11 ~~.- .. ...“i+ai.Citigt~rne from a aplke~ntraix--A-:to-the-:nexk,~-~-_’”’”’

..-..— .+..
s“~ike”in train ”B.~””~Rd””&s~_l’t.~~~-~~rn@_-~~-~~~~’t~.’~h~~a~—~

-,.,,.,....-.___......... ..,,-. ,,-.-,,
recent spike in train B. The.,distrib~~~o$~o~~Jh~?&eF~c,,,.,

,,.,....,-.,,,...-
....... .............

J
variables are specified by thetr,pdf”t’s;-:-l(T)and

.,,---_._,
?_l(.i):,i:’::::G-_-..,,,...,..—, .,

which we call the forward and backward cross–interval.de~~~-~~,.. . .,._..----
.. ____

respectively. These densities, as usual, are esticnatcid’liy’.””-:~,.....4
... .. ....+

histograms constructed from the observed spike traini’.”““’IF“~.-.=--
. .,,—

.-
-- ----

---
,. -,---

,..-
-..,—

,,..-..!.-

,.. ...
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are independent, the

with their predicted

cross–interval histograms

forms , according to Eq. 14.

It is to be noted that this prediction is based only on the

interval distribution in train B. If the observed histograms

agree with the predictions, however, it can be concluded

that the trains are independent only insofar as adjacent

spikes are concerned. Effects of one neuron’s spikes on the

other’s spikes may well be delayed to the extent that they

-TT-:will not be revealed in the cross–interval histograms.

Departures of the cross–interval histograms from their

predicted form may often indicate the type of dependence

between the two trains. Furthermore, in cases of indicated

dependence, the forward and backward cross–interval histo-

grams will in general be different.

The eecond mathematical result deals not only with the
,..

,:,,first–orderrecurrence times (forward and backward to the

.,adjacentevents), but with the sum of these for all orders.

“Letting V2) V3, ... refer to the times from a random moment

“ to the second, third, ... events encountered in the process

B,we may define in general gi(r) to be the pdf of recurrence

time.vi.. ..Ifthese pdf’s exist (as they do for most physically

realizable processes, including spike trains), then it follows

from a result of McFadden (1962, Eq. 2.21) that the sum of

.::therecurrence densities of all orders is a constant:

m

(15) GB(T) = ~ gi(7). = l/uB.

i=1
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-,. -:?-- =.,.,.. ,,..- ..--,-- -
. -.—.._ . . ,,,,...- .---- ...—.

- ,—,—, .,,.,, ..—. .. ... .. . ., ... ..-— .. .- .-. ---
.— ... .---- . .—. ....--— -.... . .,.. . .- ..———. —

:.Herk::&-:2s:-t~e-::an-tntervel:beWeen
... .-—.....—— -. . .-

.. . ..—.—..
.——-.——.. -

. .. ... .—.—..— .--.-..”..B.,whi ch:%:s....no:t::rxe-=-s:a ..-

baccward recu~retie
.—..—.—
distkiliFEions as.t

. .-......-,-.-_.-,—
their sum als,ohasu..~I.e:...:_w:,@:sEf~Lbwti~ti~

- ...----..— . .

.. .,.,.....L :s,=,=,=.,_n=

forward times.
-, -, .. ..—..........-

-,.-........ .. ..,..,

.:we proceed as befkre t~’g&ri@2z~%:~E=E~@;-~-K%:,:~g.~~$.:-~-7~-
..,-—.-,—-.—,.

..------— -------.,.-. .., ...,..——
necessarily independent spike trainsj andwe.de~~~e.{~~-~:”- “-~~

,. .-. . . .,.,.---—— ...
forward and backward waiting

——— -.
times of order i-;:W~”-~7~-~~~~_~~~

,.-—,...—— .-.—. ———
as the time ~easure~”frorn a “.Sp~.ke”;~E~CrT~-tiE~---.

subsequent spik.e."en.coUti@~@.4+ri:~~~s&:pA;-_@~ba~--------------
..-

,.

.— ......-_
ith previous. s.pike.tn.tr.ainB.~~r6;~~~<~=~~k-cF&fi~_::-----"-.

..—..—-..=..-
.-.-ctiiiespQ~~i-~~itiO”Ss-illterV~ldensities of or~er”~ a~e=d.~

-. ,—
. ...,,...-—. . ,,,----... ,.-..—

“.:”_.......Tl..Tk(.Tl.”.... !.R.c*”$@...G<A?A?._....._..___the cross-correlation Et&cttm .....-.==
. -...,--

. . .—---- .----- -

CAB(T) as ..:the,s~..@all., ordegs
,- .. . . .

of cross-inCeN’~.L-d-d.&i~=-..—.-—-...-.—..

.,.

‘ autocorretati:o,n,we r.e.al.lzq.“.t.h?~....@?::-a::%i~G-~-Fik-~~

,,.
I-.---

*
...~.+...:.,{.-+,,.”:.:,.“--’ -“::------------

.-.-.-...— .,..-,-
,,.

!4.—.
, (l$j)” :.,c~;(,a=:;:~-.::;{.:.j:’.:;-”””””””””““”---”-”–=”-”, =:::1:,:.4:

‘“”::~::i+(j==-:l.. .
.- . .-,.-.———-.——.— .- .- ..... ..——..--. —.

t+
k.~;~

m~ *Hte-&&&si .:::::=-:<.,.,..-,,..—-,.—.-.—

..—

.—-, .-,...- . . .. ..... ,,...... .
=~
=q
s—

,

-.,. -——
,..



.-.
—. : ::~”””””il:7j” ,:”: ““”~AB(,.T)= Lim prob {an event in B in (tO + ~, tO +

At+O—.
an event in A at to]/At.

Functions of this kind are called “cross intensity functions”

.— by Cox &Lewis (1966, p. 247).

The same reasoning applies, of course, if

,. consists of random instants of time, and so we

‘) = Lim
At+O

prob

T+AT)I

train A

may write

fan event in B in (t. + T, to + ~+At)[ “:

random instant to]/At

the renewal density (autocorrelation) h(~). If we

,obseme a stochastic point process starting at a

random event, then the probability of encountering.

,,—,. spikes at any time thereafter is measured by h(7).
.—.---- For

large 7 (i.e., at long times after the initial observa—

,.,,
~tionpoinG), this density becomes a constant, equal to

,.. the mean firing rate l/v (Eq. 12)..,.. on the other hand,

if we start our observation at a random instant in time,

rather than at a particular event, the probability
,..

——. -—.—.- density GB(r) of encountering a spike at some later———— ,,..
. . . ,.

time is already a constant. Heuristically, this means

that if we know that a spike has occurred, we can——

the statistical properties of the spike
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Application to Experimental Data

Thus, in order to test whether two spike trains are

independent, we may make the following measurements:

(1) The cross–interval histogram. We select spikes in

train A and construct a histogram of the times to the

nearest spikes in train B. This histogram can then be

compared with the estimated backward and forward recurrence–

time densities ql(~), and T_I(T), which in turn are estimated

from the interspike–interval histogram of train B, using

Eqs . 4b and 14. This procedure must be repeated, after inter-

changing the r81es of the trains.

(2) The cross-correlation histogrm. We select spikes

in train A and construct a histogram of the times to all—

spikes in train B, both forward and backward, out to some

specified time. This histogram provides an estimate of the

cross–correlation function ~AB(~), which can be compared

with the predicted constant value I/uB.

If the two spike trains are independent, then the

forward and backward cross–interval histograms will be

equal to the prediction [1 – FB(7)]/vB~ and hence equal to

each other, within sampling effects. Since these equalities

are a necessary but not sufficient condition for independence

of the spike trains, the cross–interval histograms have

two major uses: (1) as a corroboration of independence

when indicated by a flat cross correlation, and (2) as a

means of exploring suspected short—latency interactions,

i.e., those occurring with a latency smaller than the mean

interspike interval in train B. Cross–interval histograms
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cross-correlation histogram, which oscillate with the

period of the pacemakers. The magnitudes and phases of these

peaks vary randomly

disappear only with

we show examples of

from sample to sample, and they may

extraordinarily long samples. In Fig. 7,

cross–correlation histograms taken from

two simulated independent pacemakers (normally distributed

intervals with standard deviation of interval set at 10 per—

cent of the mean). Each sample consisted of 4000 spikes in

each neuron. The examples show the appearance and occasional

disappearance of the peaks, which may be interpreted as a

run of phase “locking” arising by chance. It is consequently

very difficult to decide from reasonably sized samples

whether two pacemakers are independent.

Thus, there are appreciable risks of falsely attributing

dependence to independent spike trains, particularly when

both neurons are pacemakers. The other possible type of

error is false attribution of independence to trains that

are in fact dependent. This is much less likely and can

arise in either of two ways: (1) The dependence may be so

weak that its effects are indistinguishable from “noise”

in the s~ple taken. (2) A simultaneous combination of

positive and negative interactions may coincidentally combine

in such a fashion as

happen, however, the

firing independently

firing of one cannot

others.

to cancel each other. If this should

two neurons may still be regarded as

since, in an operational sense, the

be used to predict firing times of the
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Dependence may
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important processek. We have alrea
.,.

action and comnon”inpti”t.

are virtually endless: ,.....:,,,,yL,2~

Two cells may interact through synaptic connec@ons .-,_,Z,;&;p”
,,,.,,.

,,.‘:.+
that may be either,direct (e.g., an axon collateral of one - ~“,......-.,...+
of the cells forming a synapse with the”other) or indirect ‘“-”;,,r

(i.e., mediated through,one or more internguronsj. ‘R& : :.:. ....:
,,,,.,,

effeccs of such interaction.s on the cross correlaticm Q~~RQC “’:!’?%!.. .-.+
*.. .L..,-

be predicted precisely without a detailed knowledge Qf t#MS”, ,, .,::=,.ii

‘“”’.;’;:

intracellular processes, including postsynaptic potentids”~
,,,,,,.,,4.....,.~
“ ‘;‘“‘+y

which underlie the production of spikes by each cell. M
..,,.,,,.,
~~‘-&

simple cases, however, the gross effects are intuLtiveQ ?:.~,~
,,..4...

obvious. For example,if cell A makes a single excitatory ~~ ““.,.,,....

synaptic connection with cell B, with a.mean conducticm W&&’ :::,,.,,,.,.,..,, .-,,;
. ..:,,

w, then we would expect the probability that cell B fires’tO~ ~ ~,~

be enhanced during i period starting at a time w after Ehe”. :.. :’;:
.,,.,.

occurrence of every spike in cell A. Therefore, we obsekve : ..-;:.

a peak in the cross–correlation function’CAB(’T~ near the: :,,:,,,~,w;~

- . . AL!
point T =w. The shape of the peak depends on the deta$ls .:;;,;;

,,. ,.+:

of the synaptic interaction (Fig. 8a).
......$’

If the connect&:, “....;;&
. ..

is inhibitory, a depression rathe+ than a peak w~ll b~’:”’;”’
--:-;:+j

.,...,.-,::,’::>~~.
observed [Fig. 8.b~.

,. -!.. ...+,’,’.,,,~
Two cells may receive input from a conmnon source ~~~~ -.,..

..

either directly or indirectly. In a simple example, iche ~~ ~=,,,...,.&
-.
..

.,.,..,..... ,,,,,,,.-----..,.,--.,,, -,....-.,..... .,.”
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Fig. 8.

Cross–correlation histograms for interacting neurons;

data from computer simulations. a. Direct excitation.

Neurons with characteristics similar to those of Fig. 2b.

Each neuron excited by an independent Poisson source of EPSP’S,

amplitude normally distributed with mean 7.5 mv, standard

deviation 1.0 mv; mean arrival rate 100/sec. Cell A makes

excitatory synapse on cell B with latency of 100 msec;

EPSP mean amplitude 10 mv, standard deviation 1 mv. In

250 see, 2053 spikes produced by cell A, 2286 spikes by cell

B. b. Direct inhibition. Same as Fig. 8a except A-B synapse

is inhibitory (mean amplitude –10 mv, etc.). In 250 see,

2068 spikes produced by cell A, 1858 spikes by cell B.

c. Shared excitation. Simulated neurons similar to those

above, but with no synaptic connections between them. Each

independent Poisson source now produces 10-mv EPSP’S, and is

reduced in rate to 25/see. An additional Poisson source

with a mean rate of 150/sec delivers 10-mv EPSP’S to both

cells, each arriving at cell A 50 msec earlier than at cell B;

i.e., each cell receives an average of 175 EPSP’S per second,

of which 150 (86%) are shared with the other cell. Each

cell produced about 2500 spikes in 150 sec. d. Shared

inhibition. Similar to previous example. Each independent

excitatory input produces 10-mv EPSP’S at a mean rate of

175/see, shared channel produces 30-mv IPSP’S at a mean



~~ :.’,-.A4a!iii
rate of 100/sec. Both cells depolarized by d-c i~p~t tti r

-’”-‘a,..:..,’-:,7:.,x:--
produce spikes. About 550 spikei”produce~ by”’~a~~”cell-----”-::~’’

in 150 sec.

to previous

from shared

e. Shsred irihib

cases; cell A is

as in example 8c.

2600 spikes in 200
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X“XXXXX ””, !X”” X, XX” X,, <“ ”,””,””,,,,”,,,,<:,, ,“,, ”,
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,,”,,,,,,,, ””””,,”,,”,,,,,” ,,,,,,,, ””””.,”.””,,,, ““,,,,”,

XXx, ”xxxx”x x,x, xxxx, !x, xx, x, <Xxix...”lxk>”xxr”,””x”x
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““,, ”””.,””,,”,,”,,,,, ,,,, ”,,,,”,,”,,,,,,”,”
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,“,. ”””””,,”,,,,,,,,,, “,, ””””,,””,”,”,,,,,,,, ,,, ”,

,“,,,,, ”,”,,,,””,”,,,,,,,,””,,, ,“”,,, ””,,””,,,.%,”,,, ,,,
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“,, ””,””,,”,,,,,,,,,,,,,” ,,,, ,,,,,, ””,,,,,,,,,1 “,%,
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“,1,., >”,l, ..)

,xx,, xxx”” hi,,\,”.,”.. .<!

,.””, .,,,,,,!,

,“ ,”...,..,”””,”,”,, ,,,, ,, ,”.)

,,, ”””””,,”,.”,,,,”””,

XK, rixxxr,, ”,, ”xxxh xx”. “,””,,,,”””>

“.. ””...”...

,,,, ”,,, ”,””, ”,>,,,. ”1, x...
“,, ,””, ”,,,,, ”, .,.1,. !.. )

““”””””1
,,.,””,,”,,,”.,,,,,,, . .

.,, r,, rx”l!”xxx”, ,, ,x” “Ix, ”,,,. ”cr, ,,,l”

,“”,,.,., ”,”.l ”.”..>.,,. ,t”,,.. <.xk*”x”xz, x,r, t rr”. t.”,”.

“KX”X”” ”””, XX., X,”,., K, “,, ,, ”,,,,,,,,,,”,,,,, ,,”,,,, (”
,, ”,,,””,,,,,””””,,,, , “.!,,,,!>”,,,,,””. ,“””, ”.!” !’!,’(

,,, ,< <,,,.,

,“..,, !”, (
,,. (<,,,,,

,, ,””,”,,,

, <”.<”,”,.!

‘,”,,,,,,,,,,,”.!”< ,r, ,”*r”” L”,

X> X,”” XXX, XXXXIX””, <IX ““”” ”,”” ””(”,, ”””””!”””
,“,., ”.,,,””.”,,.,.,,”,., t>”xx. xx, lfxt., x

HIxrx,, ,x, ,””, !i,!, ,,, ,,, ”, .1,,”,

,“. ”,, ”,. ,. ”.”,, ”””..”!
,,, ,,,,,,,, ”,.,,,,

“,,”,,”,,,”””,

, ,”””,!!!,,””

““”,”.,!>””
““””” ...<.,”,”,.”,,.,

““”<,,”..”,”.,”.

““. ””””<<,,,
“,”>,,,,, x.r>, t,, ”,, i< !“, ”

XX!, <”. ”l>. ”.!!, <,, XX. .!””!
,,!,,l, ,,, !,, (!,,,,,’. .,!,

>,”, ”!,”,!.,.!!,”,”.”,” ,.

,“””” . . . ..! .(..<,,,,,” .,, ””.
>., ””.”,”,,,””,”””””,, “,,,,, ,””>,,

,., ””,”,,,.,,,,>,,, ,Itr. r.””x, >)!r. x,

,!, <,,1”,”

,,”,, ,,,,.

,,!,, (,!,<
,., ”,,,,,,

,“, ””,,,,,

,,”,,. ,,, <

,r”. t,, ”,r
,, ”,,,.”’,,1, .,.,!,,,.

~

, .,,,,<”,”,

“k,<.’”,”!
,,, .,,.”.,

, .:,””..,..”,:
. >“, ”,,”””’!,,,,”.,,”., ,,

,1,, <,,”,”””,”,”>,,,<,,,,,,,>,,,,,,,”!

“,,,,,, ””,.””.,”,,,,”,”””,”,!,.’.!

.,,,, ”””””,,,,,!,”<.,,”, fr”””,, ,>.,. <,r, <d
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source might be a cell that makes

cells A and B at latencies zA and

.. .,,...-”,,

,-, “, -. .“+.

excitatory synapses idtii~~$---~................
..-...-...!,”y,.,.,.w

‘B‘ respectively. Ve ~h~;z.-~
.,.-,,,,,,.-..-.. .-,.- ..,w--

expect a peak”in the cross-correlation cunction ~AB(T.~~,:~~.-~r~~S-..ti..~.-,,..-,..-,....w.,,w.-
near T = z

B
— ZA. The magnitude, of the pe~~ will”d6P6iidZSn~Z~Z..--,-..,-..,,,._—_e

.... ,,--,..--w
the firing rate of the source cell as well as on the n;~%~~~;.~~~~.. ..- ,.. :,,. ,.,,”,.

-,.-— ...,-
physiological characteristics of the observed cells.”.=. ....... -—”.

.. ..._,

We have examined a number of caseaby means of CCBIUIW@K;~~~’”’.,.,. ,...,,-..,-....,..-p
?-..,,,,,.,,,...-a,—

simulation to obtain guidelines for the interpr~tatioti”ot”v:.-,-=.,. ,...... “.!”,,,.

dependence observed in physiological exp’ei?iiiiefd%.A fewrz.::.”:.-=
. .._*

.,,,-A-

representative examples are illustrated in Fig. 8s ,-::.:,::j:;::”.=.++. .,~..-..----
When networks are constructed of neurons with

,.!,~.-..=....-

similar properties and parameters, th~”.’the follohn~-=--
. ,-,..,......_-

..“.—..+
generalizations may he made Oriche basis of stmulatio~:-::...L~~;~.,.,, . ....-.,.,,,.,,...-+
studies:

----,..—-- ,...-.,-,~+..-,..,w.=4-
-,.,.,,,.--

(a] Conrnon sources of input are more difficult to dete~k--=.
.-,-.,.......,,.
..-,-,...,f,,,m,. .,.,,.,-.,_

than direct or indirect connections.
.. ..-........4
...,::,.,-=5

(b) Indirect connections are more difficult to detec~:”~:;-
-.,,,.---
.,-,.,,.,.,---

than direct connections. ....+.-.,-,--.-...,,...,,_
,.-..-..,r—

{c) Several different arrangements of functional - ,-~~~+-=.- .,
,..

interaction may lead to the same cross correla.t.%~.n,;.,:$~ti~~~-
.-.-.”~~:=:.,.:.:++>.:,...-:,-:-

—
inferent%al conclusions concerning the anatom~,and :~b~kkb$~~%

.....-.-”..-.-__& * -,,..,.-,
of the interneuronal dependence may therefore””be”impo$silile. ““”

,,,,.,.!...,,.,,-,..-.v..-,---
In spite of these difficulties, cross correla~i~eati...=....... ...4.

~~~~~~~~~~~--~”=++
their extensions can reveal a great deal about neurma~, --y+

-,.,...+
, -----aA~~........%

interactions. If, in addition, the organism is s~imu~~~~d~~.{~=~
,+s.;-+

a new experimental variable is provided, which can markedly --;’”’,:...“Lg

“:+,,.:,+-
.-.-’,..J.,.+.*-,,.,,,,,.u,..,,-.,...=

. .,.,,,,,,.,.e.-.,,-.,-M-. ......-*-...-.,.A,---
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enhance the utility of spike correlation measurements, as

discussed in the following section.
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..-.:. .&

TWO SPIKE TRAINS IN THE PRESENCE OF STIMULATION
., ._.., T:,.4.,....;

..-1. .,.,..,.,,,.”.,,,. ,

TtiiiEtionalEffects of Stimulation
,...,.,. . ,.,,,.. ..-— ...—— --..--

Interactions between neurons may be altered by.....:~;L~:~;.:,~”
.“----,,,,:,.

,.-~.,-..+...>..,,.+G.A:_.+**.
:?-+~,3-~,+*~*-!’!

presenting a stimulus to tbc animal; these ct)anges”ar”G”T~”--~~~~~~~-.,...,..,.,--.,-,,,-—7... .,....,”,,,,.,-...**..
generally reflected in the cross-correlation histo@@rn-Z~:~L-~~S.,,,,,,,...-..,.,—,.,,,.,,,.

. . ., “... ,..,-,,., . -.,.-, ” -

The effects on the cross correlation nay aiise ““’’”(~}“~~~~~~y~~-
.- . ,. ,. ....... . .. .-

changed firing rates of one or both cells,”’(2}=~RA–tiT~;~~=,,,., .,s.,.,..~.d.s~

direct or indirect synaptic input to both cells fr6w’=~:.;~Z:.->~.X,k., ,,...,,,,.,
. . . . - .-.L..A-.--,L

common source (or a set of parallel sources) that.re’sp~ti=:~~-::--

. . ... ... .

the-s timulus.on..in.t$.ra.c..tion....tha.th.wa.ys-b~e~nth~-;~~~‘-iy~...........,-,-.
,.,,. . . .. .

observed cells, or (4) through any combination of these:i...........~r-~-,,,,......,
...-!-

It is shown below that the changes in the cross-correlati~ti’::~.. .--;
.,., .-.”

function can be predicted when the stimulus is repeated:.-::---~-
.,.”,.u

..,-,. .--+
Deriodicallv, and when rwchanisms (1) or (2)s or both, ‘--ti..:z=-=’”.-. ,.. .,,., ,.=-

. . . . .. . --
are operative. Ii the obscrveclchanges from unstimulatet::;.-~z~~~.. .-,-,.,..w-

. ... ,,;--” -“..4,7

““””-t”G””””Et%-iiiiXat~d”-Fitu”aXi5n”agree wi-th thtxie pr?dlc~~~,::~%;--,-.zz-

may be concluded that mechanism (’3)is “not”Opers~itie-J”~~&---
. . . -.

that any interaction pathways between the tw? neur~s:~~-,’ --~~:
........ .,:.=..,-

not significantly affected by the stimulus.
.,,.....,.””,==..,.,.. .,..--,. .,,....-”.—-+

,.. ----.+
We now contiidef’tlie”case in which an identCcaI-”’SE53EiRiU-’. -,.,-,,....~--

-.
is presented at regular intervals of duration F.* .,~~~:.....,

intervals are long with respect to conduction times en?::;...

the duration of postsynaptic effects; i.e., the observab~e

*Irregularly spaced stimulus presentations lead t~
irrelevant complications in the calculations.
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effects of s

the time the

given stimulus have essentially died away by

next stimulus is presented.

The post–stimulus-time (PST) histogram discussed above

is an estimate of the firing probability of a neuron as a

function of time since the onset of the stimulus. (It is

‘clear that”this is a special cake of the cross-correlation
,..

function, CSA(T), where “cell” S alwaya fires at the onset

of each stimulus.) It has two additive components: the

relatively

firings of

related to

constsnt background component, which is due to

the obaerved cell that are not necessarily

the stimulus; and departures from this level,

which are due to the effects of the stimulus> whether

directly or indirectly mediated. The background level

may be affected by the stimulus, since P~, the mean firing

rate of the cell with (repetitive) stimulus “on,” may

different from PA, the mean rate with stimulus ~’off,”

accordingly as the stimulus has a net excitatory or

inhibitory effect on cell A.

It is clear that the observed cross–correlation

be

function between two cells A and B will, in general, be

different under “stimulus–on” and ‘[stimlus–offl) cOndi_

tions . The major classes of effects possible are illustrated

schematically in Fig. 9 .

In the simplest situation, shown in Case a, cells A and

B are independent, but both receive input from the stimulus.

(Each arrow represents one or more synaptic connections,



,.,,.. . .. .,.-,._ .,,-,--e. ~
,,. ... .,,.,., z

-88-

Fig. 9.

,..
,=..
,,,,

Functional relationships

neurons; schematic. Stimulus

between stimulus
,.. .,,... . -+

and”Obti~tiG=-.~... .,........-s
.,. . ,..,----

S affects neurons A,an@-::~.:”::~~~”-=,.-..”.M!-.,,. ..—.,,..,..-—
. .,,,,,..,.,-w

either directly or (dotted lines) through intermediatg~ ..-:::::cc-
.. ,-.-.,,,,M,.,

networks X and Y. In Case a, there ia no ~fitexac.tia~~f~~-~’~,,..,,,..,....,.,:-.,,....,----
between cells A and B.

.,.
In Case b, there.are inCCrdCiiULL . ...L----------

.,. .,, ,-.,., -

.,, .,-. . . . . . . . —
. ,... -., --

pathways I for possibly reciprocal inCeracti~nb+Cwe--:--~;
-,..—. ..+

. . ,,..”-,—-

neurona A and B. In Case c, interaction pa$hways I a~+’::~~~~~-,..“..,“---

themselves affected by the

.,, _,_ .,,,,,__~ ,A4+A

,..,,-
,.”,

. ..+

- .,--

---

:-...

.-

. ,.-

.-,

----

-,--

. . .. ----

.- .“--....-.. “ -—-w
---+
. ....--,,. ..
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.......-.
.— -

. . . .-—— -

in which the interaction itself is modified:.:b~:T-- . ..—..-...-
--—. -. ..

.,, -.. .
-. .... —
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the stimulus. Such modifications, or “modulstion,rf may

result from activation of excitatory or inhibitory synaptic

connections from S on interneurons in I, causing increased

or reduced effectiveness in the transmission of inter-

actions between cells A and B.

Prediction of the Cross Correlation

In the two simpler situations described above, it is

possible to predict the cross correlation in the stimulus–

on condition, on the basis of the following measurements:

(1) the mean firing rates of both cells under both stimulated

and unstimulated conditions, (2) the observed cross-correla–

tion function with the stimulus off, and (3) the observed

PST histograms for both cells.

The basic assumption involved in this prediction is

that these varioua modifications of the cross correlation,

produced by the stimulus, are sufficiently independent

to be additive. This assumption breaks down, for example,

when firing rates are high, so that refractory characteris–

tics of the neurons become important.

With stimulus off, the cross-correlation histogram is

composed of “background” and “interaction!! components. The

background component is predicted on the basis of expected

random coincidences, as follows:

With a bin width of b in the cross–correlation histo–

gram, we define a lagged coincidence (with lag time T) as

the occurrence of an event in A at to together with the



...
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occ~r~~ce of an event in B in,the.,..inciii:&k::k:’;~~_cyti&:’,’”-%
.0., . .. ... . . ........–.-. _—..–_-

The lag times T correspond to midpoints” ~f”k~ns”:.:T.~:F::X:k&-~

where
‘A

T+-5/2.
E(N(~,6)] = PAT j ~_6,2 CAB(X)

.= I/vA 2s the mean firingrq.te

dx,

in record

..,. -. . ,-----
,. . .-,. ... . .. .-

coincidences in,the c.o,rres,po,ndingbin, arising””Erorn-a;”R%@w._
. . ,,-,-..m-. ......,,-,,,,.-,,.

of A-record of length “T, is given by”-~.::::;.;:I.ZI::-_-l-L~ZZ-,::,--”~:----
.. ...-.—..-..—,... ...,-,...,,..,,,-------...,.,,,-,...-.. .....,---..- -.“---,..,,.-,,..--. . ,...—---..-,.,.,...,___

.,.-.......— ............-,.—-..-...-....... ,’,,---7
A. “-.“”-~.,,.,.-,.---. .,,..,,.,.,--:.,-......- ,.-:.”.........

Thus, the estimate of the theoretical denstty .~~~(rk>%=~:
.- .

.....——..-
--...—._.,.+=+.l ,,==

.,.-,.. ,..
:.-..—---

(21) tAB(T ) = ~,
.,,,,.
*....=.-G-
%w,.-e,-_A,._

.,.-“k

given by

--A

where nA is the observed number of spikes in A.during ~s:._...:_.;J=J. . -,,..........-.
.- ,- - ....-,,,.-

its expected value is given by E[nA] = PAT, so that we :have~~.z:=,... ..-,.,---

(22)

. .

= IJ(T,6)/(PAT6

stationary point processes @f:itIi&~-:.-:
,.-.,.-,.

.....
..—..’

however, theIf,

two cells are independent~soth%C-~nevknt ‘-cii~e???~....~”~.:-~~

occurs without any knowledge ofthesequenceOf:-eve~ksd.~_L- . -; ~--:
,,,..

record B, we have already .pointed.out ..thar..the.-:.cras.s----—-’”~~

correlation function i5 a constant:”. ~~B (~) :5::~~:::T&--s
,....,

for records offinite length, the obsened,hgg:$gggaeS~~”’”-.. .:..:~..
—...-—--

such independerit cells haa an expected ValUe”””O”~--PA

,...,.,,.....

.,,.,,.ae....-— ...—,..
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~n—~~each bin, with “noiay’rfluctuations that are reducedin

relative magnitude as the sample size increases. This

llrandom,“ or background, level, produced through randomly

occurring lagged coincidences, is the sole component of

——-:g~ec~~sg”~,~~rel:ation function for independent cells and
,.

is a contributing component to this fhction for dependent

‘–----=c&l.P.airs..-...(See.Coxand.Lewis. (1966), pp. 246-248)... ..----------:...-

Rewriting Eq. 22, we have

(23) N(T, 5) = PAT5CAB(T) = PAPBT6 + PAT6~AB(’T),

where gAB(T) represents the departure from background

level, or the “interaction!’ component:

(24) ?~(T) = ~~(T) – pB.

With stimulus on, and with new firing rates Pi and

Pi, Che corresponding

“coincidences N’(r, b)

contributions to the ,new lagged

are given by two terms:

..(25) G = P~P~T’6 -1-P~T’bgAB(T),

‘taki”ng-into””account that the new observation time T’ may

differ from the previous time T.

A third component of the stimulus–on correlation

histogram, which is due to shared input from the source,

ia obtained from the post-stimulus-time histograms. By



~~~subtracting out the background components as i’n-:.E!TC=-L-.~
,... ..
... -----.....-.........-—-

have the net PST density functions
..........L..AA--,., .....—. ,..

.Aor .B..from.th.e._.neW....rn.can._l.e.V.eJ.~._...~J....t&rnej._.T..._5fte~.".

of a lagged .co,incidencethaC-o~curs-be~~e~nce~-~
,..

Tim

. . . . . .

e141yecT==--.—....,-------

—..——. —

can come about by-arienhancement (or reduction).-+n ch.-.— .——...—.—....-......—-.——

coinc-5&enz-e-s-bettie-kriL:~=~"~~z$=~~=~~~~"~~@-----
..... . . . .

.
=.

coincidence density. Thus, we evaluate the c?rrel%g.$gn--~y
.—.....-b----

(27)

,.,

x

,,. . .—...—-
..—---- —,--

–..P-.. . . ,. .. .

~(~) = “jn~~~~:i)~sBf-;-+-T-}-’dt. ,... i“:

Because the stimulus is periodic, with period p, we take ““‘~”

the arguments modulo P in the correlation integral.*

,,y

*When the densities g are obtained from PST hiSEQg&_$ :~~j
they represent averages over a bin width. If the erosa- : ‘$&
correlation histogram has the same bin structure as the

,,,.,)
:p~~

,,.!;”,;.::
,,j ..,,!,,.,,,,
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An alternative way of predicting the contribution of

shared input from the stimulus to the cross correlation is

to isolate those effects that are time-locked to the stimulus.

This may be done as follows: one of the records (e.g.,

record B) is divided into equal segments, each equal to

the interval P between stimulus presentations. These seg-

ments are thoroughly shuffled, so that their new order is

effectively random. Then the cross correlation is recomputed

between record A and shuffled record B. The shuffling has

destroyed all significant time relationships between the

two trains except those related to stimulus presentations.

The cross–correlation histogram after shuffling, and after

subtraction of the background contribution, estimates the

same quantity as the correlation integral of the PST’s:

(28)

In practice, shuffling need not be performed, but

rather the two records are offset in time by an amount

sufficient to destroy direct temporal relationships; the

amount of offset is, of course, an integral multiple of the

interstimulus interval P.

PST histograms, there is an imprecision in the approxima–
tion of the integral by a sum, as well as a shift in the
argument T by half a bin; the latter may be compensated by
an averaging procedure.
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The expected number of lagged coincidences produced

by the shared input from the atimulua ia given by

(29) H= (T~/p)6{5~A X ESB](T),

,- ,,*
. . ., ..,:. . .. .

... . ,,,,
,,. . ,,

The total predicted number of lagged coincidences ti.th{”+~~’

,. -.,-
,., ... .,. .,”

“ .,-.

(30)

Hence

(31)

Application to Experimental Data

Comparison of the predicted

tions enables”us todistinguiah among the three aitua~io%+:: ...j~.,i.. i,,
shown in Fig. 9.

......,,, ..,,

...

If the cross-correlation function with ati~lua ofE ‘ ~~~~-“,,..

is flat,

there is

expected

..,.

within statistical limits, we may conclude t%at-” ,,,.,lm
.W’
‘;i

no interaction (Fig. 9a). In this caae the

,.,,.,,,~m
~,,.,,.,::,,,

value of 5AB(7) is zero. lf the obse~ed cr~~s- .:~..
~~~1.

correlation function with stimulus on does not then agree i,
,.:.:..:

with that predicted using Eq. 31, the appropriate conclusion “;,,;,.,,,

is that we actually have the situation of Fig. 9c, where ,,~j~~

I represents an interneuronal network

unless potentiated by the stimulus.

that is
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If the cross correlation with stimulus off is not

flat, we may conclude that there is interaction, i.e., that

I is functioning. If the prediction for the stimulus–on

cross correlation agrees with the actual measurement, we

may conclude that we have unmodulated interaction (Fig. 9b).

If there is statistically significant disagreement, we may

conclude that the interaction is modulated by the stimulus

(Fig. 9c). It may then be possible to distinguish among

several different modes of such modulation.

The application of these techniques to the detection

of interactions has been investigated through digital–

‘—--—computer- -simu~ations-;‘and the result”sh“ave”’beenpresented ““”””-””””””””””-”-

elsewhere (Perkel, 1964).

An example of this technique, drawn from experiments

in the cochlear nucleus of the cat, is shown in Fig. 10.

The agreement between predicted and observed cross-correlation

histograms with the stimulus on indicates that the complex

shape of this histogram can be completely explained by

stimulus-imposed changes in firing patterns of both units.*

In summary, we may distinguish among the three possi-

bilities as follows: (1) When there is no interaction,

the cross-correlation histogram is flat with stimulus off,

*The possibility of a small excitatory influence of
cell A on cell B, with a latency of about four milliseconds,
however, cannot be excluded but this would have a negligible
effect on the remainder of the cross-correlation histogram,
which extends to half a second.



and

on;

periodic with

and the cross

but

(3)

the

,. ,,:...:.,, ,

the correlation function can still be predi”cte&. ““ - + ~,;,.l

When the interaction is modulated by the stimlus~---:..:-:.<+,:.,i;.+$*’
“’=’n::

predicted cross correlation does not agree with
::;:,!~,:

.,<:1

.,. ,,,,..,,,,
.,,
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Fig. 10.

Effects of repeated stimulation on the cross correlation.

a. Cross-correlation histogram between spike trains recorded

from two neurons in the cochlear nucleus of the cat; unstimulated.

b. Post–stimulus-time histogram, cell A. Stimuli consisting

of brief tones were presented at l–see intervals. c. Post–

stimulus-time histogram, cell B. d. Cross–correlation

histogram under repetitive stimulation. Plotted histogram

is observed; blackened points correspond to predicted cross

correlation (method described in text) based on assumption

of absence of potentiating effect on interaction by the

stimulus. See text.
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THE PROBLEM OF I?ONSTATIONARITY ...- .“,
,., .-..4° C

. . . . . ..-. ”””.-.:
.,, . . . ... ,, . . ..w—

Basic Concepts
.-e-w,,,.- ...–-:,..

,..,=,...,,...-.A‘-
.ea.a. .~~~ d,.. ..,. .,..

., —... ,,..

All the statistical measures discussed above, for” --~,.----,.-
..:n!!-=

. .,. ....,.-
,.,.- .-.. . .,-............

Single spike trains and pairs, with and without stimlq~iow~.:,.,,:::
.,,.,,-----..-.Ll..+-,..,,,..,.. . .,.,--—

carry the implicit as,sumptlon that the data arc StaC~~~.+Z~~=..-;~~:
.,.:,,,.,.,,-,,.,e.,,,-:...; ~=-

Specifically, this means that, in the absence”’Qf Sk .,........,.,.,,
,,.,....— ..- ______

the spike trains represent realizations of”s”ta;icnmry goin.t...--.-~~
-.,..,,.,.,-,

. ,...”.,.

processes. In the presence of stimulation, it is asstirn~~~~~=
...—.... .,- .-~-

that the point processes are time dependent, btitthat the’::~<~~~~~,
. . -,..,

time variation is the same after each stimulus PreSent&%.%SX;.”:”::;2
.?+“-+

i.e., that each stimulus presentation represents a new;:.....
..:,:.,,!!.:.:,
,.......3=.,.=-*

independent trial. Thus the stimulated cases are stationary .:~~:~”-,--i....-.-
in a larger sense.

.,.,..,..-.,,......,,-.-,,,- ,..ti.,...q,

It should be kept in mind that the phrases ‘+ettit.ionary “:‘;?$
,.:, -..-,!,.

.......,.A .?--Q.,.,.=,~~.q
dat”a”and “nonstationary data” are

._‘;~st~~ct~-y‘s-pea~ing,$,:.,,,,,,,,,~::
,.—.-..-.,..

misnomers . The experimental data are samples, i.e.,--z:y-m
...,-.,.,,,..,....

....–—.,.-..-.!
realizations over finite durations of stochastic point

.....wL,-...,,----.,=
,---.,....-+

processes; only the (hypothetical) underlying point
.,,,.!--.,,.,.Z-”,..,.,-
.,. .-., -

.- ,. .“, -

processes possess the properties of being statitinary ok ....A
...-..—

.-.,,—,...,.+...,.,,--
nonstationary . In testing data for ”’’stationarityj”we

.....---..,,,,-.,!-.
..,,,——--,,,.,.,-.

are in fact testing whether the assumption of a sta.+&cma~---.+
. . .....---

.-, . . . . ---,.....,.,,., .....&&+&
underlying process is a reasonable one for the body,..O$~.,:.””=’’~~T. !J.,

.,.,..,,. . .. -.,

data in question.
....,,...--. ....---

. ..,s,.-.%,-.w-~~~.:>.->-.&w
:-+*

One of the difficulties commonly encountered in –. ..,,.,s....,&&i

““”””’””’=’=--neurophysiological investigation is the fact that the “’”::-:-------
=:=43

behavior of a neuron under study maY change significantily::::..,.;:~
--~..-....+.
,..M7

. ..=~
- ,. .....,,-,“,..,,----.-.,+-,...-----.,-.,,.,.,--
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during the course of observation, and therefore cannot

validly be assumed to arise from a stationary process.

Such changes may be exhibited in a gross way, or may be

subtle and difficult to detect. The problems of detecting

nonstationarity and assessing its effects are vexatious.

The very meaning of stationarity depends on the context

of the experiment. If, for example, a neuron undergoes

a diurnal cycle of activity, a sample of a few minutest

activity may well be accepted as “stationary,” whereas a

sample of a few hoursf activity may show marked trends,

and hence be classified as nonstationary. In operational

terms, therefore, it may be impossible to distinguish

nonstationarity from inadequate sampling.

The most direct, straightforward, and recommended way

of dealing with suspected nonstationarity is to segment the

data, analyze each segment separately, and apply standard

techniques for testing tha~ the several samples were drawn

from the same population. In practice, this is often im-

possible because of an insufficiently long sample.*A

related technique, which is useful when data processing is

accomplished “on line,” is to observe the temporal order

in which a histogram is built up. For a stationary process,

*
Some classes of spike trains, which ariee from certain

random-walk models of neurons, correspond to renewal processes
which do not have finite moments (Gerstein & Mandelbrot,
1964) . A renewal process with an infinite mean would cor-
respond to a nerve cell which has a finite probability of
remaining silent indefinitely long after a spike. A
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. .- ,. . -.,,..

the fractional mean rate of accumulation should be uni~cm~:-r:-:,%q
.,..,-..-—:-

.,,--,,.-,=, -
for all portions of the histogram (ov~r a time perio~::that~ _

,...=,...4.,.,-,..,..........-.”-.,..&,..,,-,.,,.,,.,..M,.-

and measurement .of nonstationaritY’ in spike tr.ain5.b.@S:;::::IL:Z:.:

centered almost exclusively upon one parameter, the f~ia~ -.,.,..—...

rate. In the following discussion we restrict ours6Ev~&::;:.’.:;i.+?i+?i,...!-,+,, . ,,.....4!:1”
to nonstationarities in firing rates, after pointing p?~~.:,~~---y:-+++.“,......a.,.-~. ,.,“..

the utility of statistical techniques for in~es$igatink” :...;”~$~. .,,...,----
. .:,.- ,_,.

nonstationarities in~ for examPle; the variance” Of int~rW@bZZ!.-=:_=*i

such as Bartlett’s test for homogeneity Of variances -::,,,2Y.2Z-~
,...,,..“...c..=.aa

...__.......’..”,

(see Kendall & Stuart, 1961) . ,...,=.,+.._h,,,,,.,.,.,.-
....,.i,.

There are three principal aspects to the analysis”’of “T~~~r~
.....,,,

rate nonstationarities in spike data:
,. -.

The first is the ......,..-
...,.+.,..,,.-.

detection of nonstat%onarity. “We may wish to test the ..~...-.’.---
,,,..--J

.. .....,,lA

reality of any apparent trends and this is done by te~~i~~..---.----
,.. ......>...*X
..—----------—

the hypothesis of no trend” (COx & Lewis, ;1966, P. -3FkriL~-- :,s.....-.......-,-.
...-~

this end the reader is referred to a chaPter by CCM’aU~”’Z~g~”~-:X,-.. “.--._.-.w+,.-.--—.,B—.—
&a

...—~.._
.nonpacemaker cell with wholly inhibitbrtisynaptic fn
would remain permanently silent; some mixture of inh
and excitatory input could result in the cell’s f“ir~
sporadically> with a long-tailed distribution of in.te.~zt;;::?;?-Tt
spike intervals, which might not have a finite mean= :’:r:..:..w,,---.w,,-------*

Finite samples ’of such a process cannot adequately ““””’””““”’’’””’
establish this possibility.

.....+....-.... ........M..
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Lewis (op.

The second

cit., Chap. 3) devoted to the analysis of trends.

aspect deals with the characterization and

measurement of the variations in rate when they have been

found to occur. The third aspect refers to the assessment

of the effects of rate variations on other statistical

measures; we consider below the effects of rate variations

on the autocorrelationj the serial correlogram, and the

cross correlation when the variations in rate are common

to two neurons.

Measurement of Rate Variations

In spike trains exhibiting rate variation together

with a relatively high degree of variability in interspike

intervals, special techniques are necessary to observe

the rate variations themselves, unobscured by the “local”

fluctuations in interval length. One common technique for

examining rate variations in a spike train is to plot each

interval length as a function of time (usually taken to be

the time of the second spike determining the interval) or

of serial number of the interval. If the cell fires fairly

regularly, such a plot will clearly reveal the structure of

rate

ante

variations. If, on the other hand, the interval vari-

is largej trends are hidden in the “noise.”

Moving-average techniques have often been used for

smoothing purposes. They are typically based on either a

fixed number of intervals or a fixed length of time over

which an average rate is computed. A more meaningful type
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of moving average would be one in which the contribution .QfL...Z2E_Y2.-“,.,”,.,.~,..,,.,&-..w.
each spike to the rate estimate is a decreasing exponential “.-~%’~~. ,,.-, ,..—,

....... ...,.+,.,,..
function of,the time interval between the occurrence Of .-,.--,,,

. ......Jk:.-;...,.- .,
.,, ,,,,.

the spike and the time.refe.rred”to by the:::estirnate.A“-; ‘-””~-””~.-~~..,,...,,,. ,,.,,..—.,.,:.. ............~k,:,,=...

“ratemeter” approach of this sart””c?”rrasphnds:.m~xi~:ckasi~~-
.,-....-.-...-W...L

............. .,.,Qk.,
the the response of an integrating neuron.’than”~U..t~a~~:_--~~$

rigid moving-average techniques. The time constant for””“::::<”:”::;:.,..,.—..!4....4. . .L.,,,., . . .. ...=a<. -

the exponential function can bechosen, to correspond”<+~$~’++~$s
,,.. .....-.....”----

integration period

receive

1966) .
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the output
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Cox & Lewis (1966), Chap. 3.
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Effects of Trends

One important effect of rate changes on a spike train

is to increase the variation of the interspike intervals.

This effect will be conspicuous, and therefore detectable

in the statistics, only if this additional variability of

intervals is significantly large as compared with the

‘rintrtnsiccrvariability of the intervals. We illustrate

this with two classes of examples: a “noisy pacemsker,’$

with an intrinsic coefficient of variation of 10%, and a

Poisson process (intrinsic coefficient of variation 100%),

in each of which the mean interval is a function of time.

The pacemaker results are shown in Fig. 11, in which the

autocorrelation and serial correlograms are shown for a linearly

accelerating train, a linearly decelerating train, and a train

with sinusoidally varying mean intervals. In each of these

examplesj the maximum deviation of mean interval, due to

rate changes, was ~10% of the mean interval. The effects

on the autocorrelation and on the interval histograms (not

shown) are not conspicuous; there is some broadening of

the peaks, but this effect is apparent only upon detailed

comparison with the exactly corresponding null case of no

trend. Given the autocorrelations as observed experimen-

tally, there is no reason for suspecting a trend in the

data. The serial correlograms, on the other hand, clearly

indicate the rate variations. An elevated serial correlogram,

extending more or less uniformly out to high orders> is a
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Fig. 11, .,~<.w..,.-:,,,,~,, . ..,;:,,.,,,.:.,,.,
,.:~...,,],,:.:.!+...%,., ,:,,,,.,*

.,,. ,-..,.. -,.,.-:
Effects of slow rate changes in a pacemaker .ne~riiu’~”.:;?@~

,,’,.:,,..,,,,
On the left, autocorrelation histograms; on the rights ,,,,,:,,”......( ~~

,,,,.’ .

serial correlograms of interspike intervals.
,..:.,.,.

‘lnterv@*j ,:..,:,’~l,
,,,

are independently normally distributed with time-varying ,.
,.,

mean, overall mean interval in sample of 100 msec, and

constant standard deviation of 10 msec.
.,.,

All samples are

200 sec long, approximately 2000 spikes each. (a)-(b):

Accelerating pacemaker. Mean interval decreasesl inearly

from 110

(c)-(d);

linearly

period.

msec to 90 msec during observation period.

Decelerating pacemaker. Mean intexval increases

froa 90 msec to 110 msec during observation

(e)-(f): Oscillating pacemaker. Wean interval

varies sinusoidally ,with timel from

to minimum of 90 msecf with a 2-see

maximum of 110 msec

period.
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indicator of monotonic trend. It is to be noted

effects of monotonic acceleration are indistinguish-

able from those of monotonic deceleration. The undamped

oscillatory nature of the third serial correlogram shown is due

to the imposed constancy of period of rate variation; if

that period had varied during the observation, the oscilla-

tions in the serial correlogram would .have exhibited damping.

An ingenious method is described by Firth (1966) for sepa-

rating the effects of trend on the serial correlogram from

its “inherent” features. His technique, involving succes–

sive differences, is in essence a form

variance, and is applied to cells that

regular intervals.

The time-warying Poisson process,

of analysis of

fire at extremely

on the other hand,

requires a rate variation of ~50% before some effects

are noticeable and only at ~70% rate variation do the

effects become conspicuous (Fig. 12). The only effect on

the autocorrelation of a monotonic trend is to increase

its level; the shape remains flat, as in the absence of

trend. The predicted asymptotic level for the autocorrela-

tion depends only on the mean observed interval (Eq. 12);

therefore, the observed autocorrelation histogram, together

with this predicted level, can indicate a trend. For the

monotonically time=varying Poisson processes illustrated

(Fig. 12), this is the only conspicuous effect of the

large rate variations, since the corresponding serial

correlograms depart only slightly from zero. At these
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Fig . 12.

‘.~i ; q
.:,. ,, ,, .,.,. ..,,, . . . ..m. ,.,

,.=,m._. .,

. ..- ,~.,,-=.,*

Effects of slow rate changes in a nonpacemaker n~tir$~..,:,.;?.,,,,,;.,.,.

On the left, autocorrelation histograms; on the rights
,:!

serial correlograms of interspike intervals. Intervals ,,.!:,:,:!,,
.,,

are generated by a Poisson process with time-varying rate
,,

,,!,,,.,
parameter; period of observation is 2QQ see, with approx%- ‘~~

mately 2000 spikes each sample. Reference level in a@m- j !:j

correlation is predicted asymptotic value (see text, Eq. 12). :’:’~

(a)-(b): Deceleration, ~ 50%. Mean interval increases ,:;,.,,,,,,,:::,..?;,4,

linearly “with time from 50 msec to 150 msec. (c)-(d): ,’,.
“:

Deceleration, ~ 70%. Mean interval increases linearly
.’,,

with time from 30 msec to 170 msec. (e)-(f): Oscillation, ,::~f

+ 50$.
:.!

Mean interval varies sinusoi”dally from minimum of
.,!,
,:1:

,,. .
50 msec to maximum of 150 msec, with period of 0.75 msec. ,~”j

,f

,.$

(g)-(h): Oscillation, ,2 70%. Mean interval varies ,,,,,.,.

sinusoidally from minimum of 30 msec to maximum of I’?omaect
,,,,

0.75-sec period. ,::
,,,,.;,:,,,,,,
,:;,.
,,,,~:~
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intensities of cyclic rate variation, oscillations are

visible in the autocorrelation, but not in the serial

correlogram; this is in contrast with the opposite situa—

tion observed in the case of a pacemaker with weak oscil-

lations in rate. A nmnotonically declining autocorrelation

histogram, such as the early portions of Figs. 12c and 12d,

is strongly suggestive of rather severe rate changes in

the data, and some detailed statistical featurea of the

spike trainmay be masked or distorted thereby.

Rate changes shared by two otherwise independent

neurons may, if sufficiently pronounced, be revealed in

two-cell comparisons. It can be shown, for two Poisson

processes with timewarying parameters, that the maximum

fractional expected departure of the cross correlation

from its “null” level is less than the square of the maxi—

urn fractional rate variation. If, for example, the shared

rate changes of the two processes vary within 20% of their

respective means, then the cross correlation will depart

by at must 4% from its predicted value for independent

stationary processes based upon observed firing rates

(Eq. 15). The actual amount of departure depends upon

the precise nature of the temporal variation of the rate

parameters of the Poisson processes; details will be pre-

sented elsewhere.

These results are illustrated in Fig. 13, in which

cross-correlation histograms are shown for pairs of Poisson

procesaea subjected to nmnotonic and oscillatory rate
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level for stationary independent processes, based u@on : ,,,,,:~~
~~“.:.;::{.$.,..++

~~~,-fl+
observed mean “firing rates (see text, Eq. 15). Rate
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variations a.ameas in Fig. 12. a. Deceleration, & 5~%. i’”~;~i~:
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changes. The effect is always an elevation in level of

the cross<orrelation histogram in the neighborhood of

its origin. Linear trends result in a uniformly elevated

cross correlation, which remains flat. oscillating trends

give rise to an oscillating cross-correlation histogram,

if the range of the latter is great enough.

Because the effects of nonstationarity on the cross

correlation are of second order, the statistical indica-

tions of “interaction between twu cells (discussed in an

earlier section), are not severely affected by rate

changes in one or both of the cells, even if they are

fairly severe. Inasmuch as stationary conditions are

often difficult to maintain in an experiment, this fact is

an encouragement to the attempt to elucidate functional

interconnections of neurons through statistical compari-

son of their spike trains.
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